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a  b  s  t  r  a  c  t

In  this  paper  the  omni-directional  reflection  bands  in  one-dimensional  plasma  photonic  crystal  (PPC)  have
been  studied  theoretically.  We  present  the  study  of  plasma  photonic  crystal,  having  alternate  regions  of
plasma–dielectric  (Al2O3 or ZnS).  Reflectances  from  this  periodic  multilayered  structure  in  TE-  and  TM-
modes  are  calculated  for different  angles  of incidence  in  microwave  region  for  omni-directional  reflection
bands.  The  reflectance  is  obtained  by solving  a  Maxwell’s  equation  using  a  translational  matrix  method.
In addition  to  this,  we  have  also  studied  the  effect  of  variation  of  plasma  width  as well  as  plasma  density
on  the  reflection  properties  of  plasma  dielectric  photonic  crystal  in TE-  and  TM-modes.  The  study  of
reflectance  bands  of  such  plasma  photonic  crystals  shows  that  it can  be  used  as  omni-directional  reflector.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Photonic crystals (PCs) known to possess several unique and
interesting features have been gaining attention very fast in the
area of optical and solid state physics [1,2]. The photonic crys-
tals having dusty plasma and discharged micro-plasma are known
with the nomenclature as plasma photonic crystals [3,4]. These
classes of materials have wide applications such as the inhibi-
tion of spontaneous emission [5], low loss wave guide with sharp
bands [6], narrow-band filters, frequency converters and strong
field enhancement related to the group velocity, mode propagating
at frequencies near band edge [7,8]. The plasma photonic crys-
tal in one-, two- and three-dimensional periodic arrangement of
dynamically controlled micro plasma plays a very significant role
in changing the refraction of electromagnetic waves. Kiskinen and
Fernsler [3] have theoretically studied photonic band gaps in dusty
plasma crystals for the first time. The importance of dusty plasma is
attributed to the dynamic structure and general phenomenology.
Several aspects of dusty plasma crystals e.g. wave and structure
have been studied [9–12]. The band gap features are dependent on
the plasma sheath characteristics of the dusty plasma crystal i.e. the
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relative size of the particle plus plasma sheath width with respect
to the lattice constant of the dusty plasma crystal. The effects of the
plasma sheath are to increase the band gap. In addition, the band
gap is a function of the ratio of dielectric constant of dust and the
background plasma. The application of such dusty particle is used
to control the electromagnetic energy in plasma processing system
and also to development of plasma mirror [13].

Marklund et al. [14,15] studied the quantum electrodynami-
cal effect in dusty plasma. They have predicted a new non-linear
electromagnetic wave mode in magnetized dusty plasma; its exist-
ence depends on the interaction of an intense circularly polarized
electromagnetic wave with dusty plasma where quantum electro-
dynamical photon–photon scattering is taken into account. Hojo
et al. have theoretically studied the dispersion relation and reflec-
tionless transmission of electromagnetic wave in one-dimensional
photonic crystal. The dispersion relation is obtained by solving a
Maxwell’s equation using a method analogous to Kroning–Penney’s
model [16,17]. Recently Shiveshwari and Mahto [18] studied
the propagation of electromagnetic waves in one-dimensional
plasma-air photonic crystal with finite and infinite periodic struc-
ture.

In this paper, we  have studied the reflection properties of plasma
dielectric photonic crystals. Further, we have also studied the effect
of variation of plasma width as well as plasma density on the reflec-
tion properties of plasma dielectric photonic crystal in TE- and
TM-modes.
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Fig. 1. Periodic variations of plasma and dielectric showing 1-D plasma photonic
crystals.

2. Theory

One-dimensional Maxwell’s wave equation is given by [19–21]

d2 �E (x)
dx2

+
(

ω2 ε (x)
c2

− ˇ2

)
�E(x) = 0, (1)

where  ̌ = (ω/c)ε(x) sin �, ω is wave frequency, � is angle of inci-
dence, c is the velocity of light in vacuum and  ̌ is z-component
of wave vector. To study the wave propagation in one-dimensional
plasma dielectric photonic crystals composed of N unit cells i.e.
N alternate layers of plasma and dielectric material (like ZnS and
Al2O3) of thickness Ld and L respectively. The geometry of the struc-
ture is shown in Fig. 1.

The profiles of plasma and dielectric permittivity are given by;

ε(x) =

⎧⎨
⎩ εp =

(
1 − ω2

p

ω2

)
−Ld ≤ x ≤ 0

εm 0 < x < L

(2)

with ε[x + L(1 + d)] = ε(x), Here ωp is the plasma frequency given

by ωp = ((npe2)/(ε0m))
1/2

, where e and m are charge and mass of
electron with a density np and εm is the dielectric constant of the
material. Where L and Ld are the thickness of dielectric and plasma
layers and L(1 + d) is the period of unit cell. For solving the propaga-
tion of electromagnetic wave in these media, we  use 2 × 2 matrix
formulation. The electric field distribution E(x) with each homoge-
neous layer can be expressed as the sum of incident wave and a
reflected plane wave. The complex amplitude of these two  waves
constitutes the component of a column vector. The electric field in
the nth unit cell, can be written as follows.

For ω > ωp

E(x) =
{

an exp(ikmx) + bn exp(−ikmx) 0 < x < L

cn exp(ikpx) + dn exp(−ikpx) −Ld ≤ x ≤ L
(3)

where kp = εp(ω/c) cos �p and km = εm(ω/c) cos �m, here �p and �m

are angles in the layers and are related by the equation εp sin �p =
εm sin �m, employing the matrix method for ω > ω, the constant an,
bn, cn and dn have been deduced and are found to be;(
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and(
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dn
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(
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)
(5)

For nonmagnetic materials �i = 1 and for the TE mode, by elim-
inating (cn/dn) in Eqs. (4) and (5), the matrix equation is obtained
as(
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bn−1

)
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)(
an

bn

)
(6)

The matrix elements are given by, for ω < ωp
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where � = (kp/km) for TE-mode and � = ((kp × n2
m)/(km × n2

p)) for
TM-mode.

A layered media is equivalent to a one-dimensional lattice that
is invariant under the lattice translation i.e. ε[x + L(1 + d)] = ε(x).
According to the Floquat–Bloch theorem, solutions of wave equa-
tion for a periodic media are of the form, EK (x, z) = EK (x)e−iˇz e−iKx,
where EK(x) is periodic with a period L(1 + d) that is EK (x +
L(1 + d)) = EK (x). The subscript K indicates that the function EK(x)
depends on K, the constant K is known as the Bloch wave number.

In terms of four-column vector representation and from Eq. (6)
the periodic condition for the Bloch wave is simply;(

an

bn

)
= e−iK[L(1+d)]

(
an−1

bn−1

)
(11)

The two eigen values in Eq. (6) are inverse of each other. Since
translational matrix is uni-modular, which gives the dispersion
relation between ω,  ̌ and K for the Bloch wave function as

K (ˇ, ω) = 1
L (1 + d)

cos−1
[

1
2

(m1,1 + m2,2)
]

, (12)

where
∣∣1/2(m1,1 + m2,2)

∣∣< 1 correspond to real K(ω, ˇ) and prop-

agating block waves, where
∣∣1/2(m1,1 + m2,2)

∣∣> 1 correspond to
imaginary K(ω, ˇ), so that the Bloch waves is evanescent. These are
so called for forbidden bands of the periodic medium. The band
edges are the regimes where

∣∣1/2(m1,1 + m2,2)
∣∣ = 1.

Therefore the dispersion relation for ω > ωp will be
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(13)

For a periodic layer medium that consist of the N unit cell and
bounded by homogenous media of index n0 = 1.0 (air), the matrix
equation becomes;(

a0

b0

)
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m11 m12
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)N(
aN

bN

)
(14)

or(
a0

b0

)
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(15)

where M11 = m11UN−1 − UN−2, M12 = m12UN−1, M21 = m21UN−1,
M22 = m22UN−1 − UN−2 and UN = ((sin[(N + 1)KL(1  +
d)])/(sin[KL(1 + d)])). So, that the reflection and transmission
coefficient are given by;

r =
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)
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