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a  b  s  t  r  a  c  t

In this  paper,  the  adaptive  impulsive  synchronization  for  a class  of fractional-order  chaotic  and  hyper-
chaotic  systems  with  unknown  Lipschitz  constant  is  investigated.  Firstly,  based  on  the  adaptive  control
theory  and the  impulsive  differential  equations  theory,  the  impulsive  controller,  the  adaptive  controller
and  the  parametric  update  law  are  designed,  respectively.  Secondly,  by  constructing  the  suitable  response
system,  the  original  fractional-order  error  system  can  be  converted  into  the  integral-order  one.  Finally,
the  new  sufficient  criterion  is derived  to  guarantee  the  asymptotical  stability  of  synchronization  error
system  by  the Lyapunov  stability  theory  and the  generalized  Barbalat’s  lemma.  In addition,  numerical
simulations  demonstrate  the  effectiveness  and  feasibility  of  the  proposed  adaptive  impulsive  control
method.
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1. Introduction

Fractional derivative has its inception in an exchange of let-
ters between L’Hospital and Leibniz in 1695. It is observed that the
description of some systems is more accurate when the fractional
derivative is used [1–4]. Compared to classical integral-order mod-
els, the fractional derivative provides an excellent instrument to
describe the memory and hereditary properties of various mate-
rials and processes. So research on fractional-order systems has a
more universal meaning. Nowadays, many fractional-order differ-
ential systems behave chaotically [5–8]. Chaotic synchronization
in fractional-order chaotic and hyperchaotic systems is becoming
the research hotspot of nonlinear science [9–11], due to its wide
applications in secure communication and control processing.

In recent years, a variety of approaches have been proposed
for the synchronization of fractional-order chaotic systems such
as active control method [12,13], sliding mode control method
[14,15], adaptive control method [16,17], impulsive control method
[18–20] and so on. As impulsive control allows the stabilization
and synchronization of chaotic systems using only small control
impulsive, it has been widely used to stabilize and synchronize
chaotic systems [21–23]. In [18], a novel impulsive control method
based on comparison system was reported to achieve complete
synchronization of a class of fractional-order chaotic systems. An
impulsive synchronization scheme for a class of fractional-order
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hyperchaotic systems was  proposed in [19]. A new synchronization
criterion of fractional-order chaotic systems was proposed based on
the stability theory of impulsive fractional-order systems in [20].
However, there is little related results reported on adaptive impul-
sive synchronization of fractional-order chaotic and hyperchaotic
systems. Research in this area should be challenging. In [24], by the
generalized Barbalat’s lemma  and the Lyapunov stability theory,
Zhang et al. investigated the adaptive impulsive synchronization
for a class of non-autonomous integral-order chaotic systems with
unknown Lipschitz constant. In [25], Li et al. discussed the issue
of adaptive impulsive synchronization and parameter identifica-
tion for a class of integral-order chaotic and hyperchaotic systems.
In this paper, we will discuss the adaptive impulsive synchroniza-
tion for a class of fractional-order chaotic and hyperchaotic systems
with unknown Lipschitz constant, based on Ref. [18,24,25]. Numer-
ical simulations are presented to verify the effectiveness of this
approach.

The rest of the paper is organized as follows. In Section 2, some
preliminaries of fractional derivative are briefly introduced. Adap-
tive impulsive synchronization method of fractional-order chaotic
systems is presented in Section 3. In Section 4, the proposed method
is applied to fractional-order chaotic and hyperchaotic Chen sys-
tems with unknown Lipschitz constant. Simulation results are
shown. Finally, conclusions are addressed in Section 5.

2. Preliminaries of fractional derivative

At present, there are several definitions of fractional-order
differential operator, such as Grünwald–Letnikov (GL) definition,
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Riemann–Liouville (RL) definition, Caputo definition, and Jumarie
definition. Among them, the method defined by GL is the most
direct numerical one to solve the fraction-order system. Now we
give GL definition as follows [26,27]:
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Eq. (1) can be reduced to
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h is the time step. The above approximation is mainly used in this
paper.

3. Description of adaptive impulsive synchronization

Consider a class of fractional-order system

D˛x(t) = Ax(t) + �(x(t)), (3)

where 0 <  ̨ < 1, x ∈ Rn represents the state vectors of the system,
A ∈ Rn×n, � : Rn → Rn is nonlinear vector function. System (3) is
regarded as the drive system.

Assumption 3.1. For any x, y ∈ � ⊆ Rn, ∃L > 0 such that

‖�(y(t)) − �(x(t))‖ ≤ L · ‖y(t) − x(t)‖. (4)

Remark 3.1. Assumption 3.1 means that the above function satis-
fied uniform Lipschitz condition. Most of common chaotic systems
satisfies this condition, such as Lorenz system, Chen system, and
Lü system. Although chaotic systems are bounded, the Lipschitz
constant is difficult to determine. The case that L is unknown is
considered in this paper.

In order to achieve self-synchronization of fractional-order sys-
tem, we construct the controlled response system as follows:{

D˛y(t) = Ay(t) + �(y(t)) + u(t, x(t), y(t)), t /= tk, k = 1, 2, · · ·,

�y  = y(t+
k

) − y(t−
k

) = Bke(tk), t = tk,
(5)

where y ∈ Rn is the state vector of the system, u(t, x(t), y(t)) ∈
Rn is the adaptive controller. The discrete time set tk satisfies
0< t1 < t2 < · · · < tk < · · ·,  lim

k→∞
tk = ∞.  And the initial time t0 sat-

isfies 0 ≤ t0 < t1. y(t+
k

) = lim
k→t+

k

y(tk), y(t−
k

) = lim
k→t−

k

y(tk), and y(t−
k

) =

y(tk) is assumed. Bk = BT
k

are n × n gain matrices, e(t) = y(t) −
x(t) = [y1(t) − x1(t), y2(t) − x2(t), · · · , yn(t) − xn(t)]T is synchroniza-
tion error vector.

Substracting Eq. (3) from Eq. (5) yields error dynamical system
as follows:{

D˛e(t) = Ae(t) + ϕ(x(t), y(t)) + u(t, x(t), y(t)), t /= tk, k = 1, 2, · · ·,

�e  = e(t+
k

) − e(t−
k

) = Bke(tk), t = tk,
(6)

where ϕ( x(t), y(t)) = �( y(t)) − �( x(t)).
According to Assumption 3.1, we have

ϕ(x(t), y(t)) ≤ L · ‖e(t)‖. (7)

The synchronization problem is to design the adaptive con-
troller and the parametric update law to achieve the asymptotical
synchronization of the drive system (3) and the response system
(5), that is, lim

t→+∞
e(t) = 0. However, to the author’s knowledge, no

mature theory is provided on the asymptotical stability of impul-
sive fractional-order system shaped like system (6).

To solve this problem, we will construct a new controlled
response system as follows,{

˙y(t) = Ay(t) + �(y(t)) + u(t, x(t), y(t)) + N(x(t)), t /= tk, k = 1, 2, · · ·,

�y  = y(t+
k

) − y(t−
k

) = Bke(tk), t = tk,
(8)

where N(x(t)) = ẋ(t) − D˛x(t), ẋ(t) and D˛ x(t) are from system
(3). Then the following new synchronization error system can be
obtained by systems (3) and (8){

ė(t) = Ae(t) + ϕ(x(t), y(t)) + u(t, x(t), y(t)), t /= tk, k = 1, 2, · · ·,

�e  = e(t+
k

) − e(t−
k

) = Bke(tk), t = tk,
(9)

Obviously, by constructing the response system (8), the synchro-
nization of fractional-order chaotic system can be converted into
the impulsive control of integral-order synchronization error sys-
tem (9).

The adaptive impulsive controller is designed as follows:

u(t, x(t), y(t)) = −(  ̌ + L)e(t), (10)

where  ̌ > 0 is a constant, the parameter L is used to approach the
unknown parameter L, and its update law is given as{

L̇ = �‖e(t)‖2, t /= tk, k = 1, 2, · · ·,
�L = 0, t = tk

(11)

where � > 0 is the adaptive rate.
To get the main conclusion, we  give the following generalized

Barbalat’s lemma  [24]:

Lemma  3.1. Suppose a sequence tk satisfies
0< t1 < t2 < · · · < tk−1 < tk−1 < · · · and lim

k→∞
tk = +∞, � =

inf
k

{
tk − tk−1

}
> 0. And suppose f(t) is defined on the interval

[t0, + ∞)  and differentiable on the interval [tk−1, tk). If f(t) and ḟ (t)
are uniformly bounded for k on the interval [tk−1, tk), that is, ∃M0,
M1 > 0, ∀ t ∈ [tk−1, tk), k ∈ N, one has |f(t)| ≤ M0, |ḟ (t)| ≤ M1, and the
generalized integration

∫ +∞
0

f (t)dt is convergent, then lim
t→+∞

f (t) = 0.

By the theoretical proof, the main result is obtained as follows:

Theorem 3.1. Let �A be the largest eigenvalue of A + AT. If the adap-
tive impulsive controller (10) and the parametric update law (11) are
adopted, as well as the following condition are satisfied:

(i)� = inf
k

{
tk − tk−1

}
> 0; (12)

(ii)�max((I + Bk)T (I + Bk)) ≤ 1; (13)

(iii)
1
2

�A −  ̌ < 0, that is,  ̌ >
1
2

�A; (14)

then the synchronization error system (9) is asymptotically stable, that
is, the impulsive controlled response system (5) and the drive system
(3) asymptotically synchronize.

Proof. Let the Lyapunov candidate be

V(e) = 1
2

eT e + 1
2�

(L − L)
2
. (15)
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