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a  b  s  t  r  a  c  t

Images  in  one  class  often  have varied  sizes  due  to  different  imaging  system.  Thus  it  will  provide  conve-
nience  to  image  classification  if  the  indicator  used  in the  classification  is  robust  to the  size of  images.  We
regard  the  robustness  to  size  of image  as a property  of  image  indicator.  The  property  means  that  images
from  one  class  have  small  variance  with  the sizes,  and  is  different  from  such  traditional  properties  as
the  robustness  to  scale,  rotation  and  illumination.  Fractal  dimension  is  an indicator  which  has  the  three
traditional  properties.  We  realize  the  property  on  fractal  dimension  in  the  statistical  sense  by  modifying
differential-box  counting  method.  Tests  on  two  classes  of images  demonstrate  the  effectiveness  of  the
modifications.  Tests  on scaling  process  give  a standard  of  FD’ robustness  as  0.0611,  and  experiments  on
both  the  two  class  and  four sets  of  images  show  the statistical  validity  of the  standard  and  verify  the
realization.  An  indicator  with  this  property  can be  a tool  for  the  classification.

©  2013  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Images in one class are often given by many imaging systems.
In general cases, such systems output images of varied sizes. This
confronts both image classification and other image analysis tasks
with the challenge how to abstract the class information. Indicators
of images can be very helpful, if they can be robust to size of images.
If a kind of indicator has a small variance with sizes of images in
one class, it can be a tool to determine whether an image is in the
class. In other words, the image is very possible to be in the class,
if its indicator is similar to those indicators of images in the class.
Two indicators are similar if their difference is below the variance.

Indicators have been developed for many tasks, such as frac-
tal dimension (FD) [1–3] for image segmentation [4–7]. A good
indicator is expected to be robust to three transformations which
the imaging systems often endure, including scale, rotation, and
illumination. FD is an indicator robust (invariant) to the three trans-
formations. In practice the estimate of FD (EOFD) is not invariant
but only robust to the transformations because of the finiteness
of sampling rate; in this sense we use the word “robust” instead
of “invariant”. However, the robustness to size is unnoticed, and
EOFD is not robust to size of image. In fact, size differs itself from
the three transformations. For an example, let’s image a graph of
sine function, and then scale affects the image by sampling rate,
while size affects the image by how long the graph is imaged at a
sampling rate. In other words, scale affects the imaging process by
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changing sampling rate of an imaged scene, while size affects the
process if the scene is still in the same class and the sampling rate
is not changed. We  regard this robustness to size as a property of
image indicator.

The classification is similar to the feature retrieving task in [8],
where the authors show successfully the usefulness for EOFD to
the task. Note that images of small size such as 4 × 4 make sense in
the tasks, and then EOFD’s behavior on images of small size is not
trivial. For convenience, hereafter we do not distinguish FD from
EOFD if not pointing out. FD is also useful in image segmentation
[4–7], image coding [9], edge detection [10,11], biometrics tech-
nique [12], network [13], corn progress detection [14] and maritime
target detection [15].

2. Related concepts of FD

To estimate EOFD, in [16] ε blanket method is proposed. In
[17,18] fractional Brownian random filed method is developed. In
[19] the differential box-counting method (DBC) is developed based
on the work in [20]. We  prefer DBC only because the method is
similar to the definition of Hausdorff dimension.

In [21] the size problem is noted in the sense of data sample size.
The work is toward another goal, expanding FD’s effectiveness on
more data sets. In [22,23] good revisions are presented to promote
successfully the accuracy of FD. In [24,25] the lacunarity, a measure
of texture of a fractal object, is discussed, to be an indicator to reflect
the complex geometry. In [26] a good parallel implementation of
DBC is reported.

Through the definition of FD, if one covers the measured object
completely with the number N(ε) of balls of radius at most ε, and
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if N(ε) always grows with ε−D as ε approaches zero, then the mea-
sured object has FD as D:

N(ε) ∝ ε−D (1)

Consider the image of size M × M as a three dimensional space
with (x, y) denoting two dimensional position and with gray level
denoted as the third dimension z. The (x, y) plane is partitioned into
grids of size ε × ε. Each grid is composed by boxes of size ε × ε × ε.
In the (i, j) grid let the minimum and maximum gray level of the
image fall into the kth box and the lth box, respectively. Then the
number of boxes needed to cover the image surface over the (i, j)
grid is given by:

Ni,j(ε) = l − k + 1. (2)

Here the constant 1 is intended to cover the box where l = k. Or
calculate first the difference between the minimum and maximum
gray level in the grid, and then correspond the difference to the
(l − k) in Eq. (2) [16] by scaling the difference by ε. In this paper we
choose this way. And one obtains N(ε) in Eq. (1) by:

N(ε) =
∑

i,j
Ni,j(ε). (3)

N(ε) is clues of ε. Then we obtain FD of the image by the least-
squares linear fit of lg(N(ε)) against lg(1/ε).

3. Methods

We  think that two problems in DBC are responsible for FD’s
vulnerability to size as follows.

The way of cover: Consider the case where the size of an image
contains prime number, e.g., M is prime number. Given that every
box is of size s × s × s and s takes 2 as its minimum, boxes cannot
cover the entire (x, y) plane except the case where s is increased to
the prime number, i.e., part of information in the image has to be
lost. Images from the same class should have common information
which labels the class. The lost caused by incomplete cover may
reduce the information’s effectiveness on the classification. In [27]
the authors note this problem of incomplete cover, but they take
the values in the uncovered region as zero.

The constant 1: The constant in Eq. (2) has a definite physical
meaning that an area needs at least 1 box to cover [19]. We  write
the constant as c, to make Eq. (2) as follows: Ni,j(ε) = l − k + c. But in
the terms of programming, by Eq. (2) we know that the constant has
two effects. First, the constant strengthens the numerical stability
when lg(N(ε)) is calculated, since that Eq. (3) will give N(ε) = 0 if
l = k in each grid in the case of c = 0. The value of c should not be
too small for the stability of lg(N(ε)). Second, it affects the value
domain of FD if we consider FD as a function of the constant. With
ε decreases, (l − k) increases with ε−D but c does not increase, to
make Ni,j(ε) and even N(ε) not satisfy Eq. (1). The constant brings
about deviation from FDs in the case of l /= k; and the smaller c is,
the smaller the deviation is.

To enable FD with the robustness, we cover the surface of the
image as follows. Consider an image of size M × N. First use boxes of
size ε × ε × ε to cover the surface at most extent, in the way the same
as that in DBC. Then for the uncovered area if existing, use a box to
cover the entire surface. This way of cover adds a contribution to
N(ε) in DBC at a given ε.

The modification is effective, as demonstrated in both
Figs. 1 and 2. In Fig. 1, for the class of single gray level image where
the sizes increase from 23 to 212, DBC gives FDs’ variance as about
0.07 while the modified DBC gives FDs’ variance as about 0.03. In
Fig. 2, for the class of grating figure where the sizes increase from
23 to 212, DBC gives the variance as about 0.08 while the modified
DBC gives the variance as about 0.03. Thus the tests demonstrate

Fig. 1. Effect of the modified way of cover on single gray level images.

Fig. 2. Effect of the modified way  of cover on grating figures.

the effectiveness of the modification. Note that images of small size
make sense as shown in [8].

By changing the value of the constant c at a given ε, we  obtain
the effect which the constant takes on FD. First, we obtain N(ε)
by letting c = c0. Second, we obtain Nc(ε) by letting c = c1. Denote
f(c) = N(ε) − Nc(ε), i.e., the changing decreases N(ε) by function f(c).
By Eq. (2) we  know that f(c) is proportional to c; moreover, f(c) is a
constant for N(ε) at a given ε, because that the way of cover is the
same. Assume c1 > 0 and c0 > 0, then the function is positive if c0 > c1,
negative if c0 < c1. Then if c is increased from c0 to c1, FD obtained
from c0 would be bigger than that from c1. The function’s effect is
small if every (l − k) in Eq. (2) is big enough, because in this case c
contributes smaller to N(ε) than (l − k). Whereas (l − k) is not always
so big, the effect raises the problem which value of c is appropriate
for FD.

According to our experience, no image has N(ε) less than the
N(ε) of a single gray level image, where Eq. (2) gives only c as con-
tribution for every ε. In theory FD of single gray level image is 2. The
value of c should keep this property. In practice EOFD is not exactly
2; a deviation varying with the way  of cover and varying with the
value of the constant exists. Hence this property is supported if FD
of single gray level image is close to 2, where the deviation varies
with both the way  of cover and the constant. DBC gives the devi-
ation as demonstrated in Fig. 1, where the size is from 23 to 212,
and where DBC gives FDs from 2.09 to 2.16 while the modified DBC
gives FDs from 2.03 to 2.06.

Consider the case where N(ε) of an image is big enough. It is
expected that FD of the image can be close to 3 since that N(ε) for
every ε achieves its maximum. According to our experience, grating
figure is such an image if it takes only two  values, 0 and 255, as its
pixel value. The value of c should also keep the property that FDs
of grating figures are almost 3.00. This property is also supported
by DBC, with a deviation demonstrated in Fig. 2. Though it is seen
from both Figs. 1 and 2 that the modification to the way of cover
decreases the deviation, this effect on accuracy is not concerned in
this paper because robustness instead of accuracy is vital for image



Download English Version:

https://daneshyari.com/en/article/849356

Download Persian Version:

https://daneshyari.com/article/849356

Daneshyari.com

https://daneshyari.com/en/article/849356
https://daneshyari.com/article/849356
https://daneshyari.com

