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a  b  s  t  r  a  c  t

This  article  analytically  describes  broadband  second-harmonic  generation  in a double-tapered  gallium
arsenide  (GaAs)  slab  using  total  internal  reflection  quasi-phase  matching  technique.  This double-tapered
configuration  ensures  a combination  of  increasing  and  then  decreasing  bounce  lengths  which  provides
an  extremely  wide  3 dB bandwidth  of 573.6  nm  with  a  conversion  efficiency  of  1.929%,  after  considering
reflection  and absorption  losses.  Effect  of  varying  the  slab  dimensions,  viz.,  length  and  tapering  angles,
as  well  as  the  operating  temperature  on the  performance  parameters  has  also  been  incorporated  in  the
analysis.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Rapid development in the field of semiconductor technology
has led to extensive use of isotropic semiconductors for optical
frequency conversion techniques in different wavelength ranges.
These isotropic semiconductors offer a number of advantages like
(i) high optical second-order nonlinear susceptibility, (ii) excellent
transparency range, (iii) good mechanical properties, (iv) possi-
ble future integration with the pumping source, etc. [1]. However,
most of these semiconductors being isotropic, no natural birefrin-
gence phase matching is possible. Therefore, quasiphase matching
(QPM) may  be considered an attractive technique for frequency
generation in these isotropic crystals and is practically imple-
mented through molecular bonding of the semiconductor plates [2]
or localized growth [3]. However, the difficulty of this technique
lies in the stringent conditions of QPM which leads to techno-
logical difficulties [4]. The advent of total internal reflection (TIR)
QPM [5] in a plane parallel isotropic slab has indeed exaggerated
the use of isotropic semiconductors like gallium arsenide (GaAs),
zinc selenide (ZnSe), zinc sulphide (ZnS), etc. for newer optical
frequency generation through resonant as well as nonresonant sce-
narios [6–8]. In the case of a parallel slab [6,7], the width, t, of the
slab is optimized to have maximum conversion yield for second-
harmonic generation (SHG) of a given input laser wavelength. But
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since a broadband SHG frequency converter converts a band of fre-
quencies, rather than a single frequency, it is difficult to optimize
the interaction length between successive bounces for each fre-
quency available in the input broadband source using a parallel slab
configuration. Recently, random quasi-phase matching, as experi-
mentally demonstrated by Raybaut et al. [9], has come forward as
a wonderful technique for broadband frequency generation using
polycrystalline isotropic sample consisting of a number of ran-
domly oriented single-crystal domains of random shapes and sizes.
This technique has been demonstrated in transparent (ZnSe) [9] as
well as opaque [gallium phosphide (GaP)] [10] semiconductors and
can indeed make the nonlinear optical technology accessible to a
much wider range of potential users. Broadband SHG has also been
theoretically reported in single-crystal tapered isotropic configu-
ration (GaAs, ZnSe) using TIR-QPM technique [11]. Since a tapered
slab has been considered, the length between successive bounces
goes on increasing as the input collimated fundamental laser radi-
ation propagates through the tapered slab, thereby ensuring the
possibility of both non-resonant and resonant QPM. In this case, it
may  so happen that one interaction length between two  successive
bounces may  coincide with an odd multiple of the coherence length
for a particular frequency of the input broadband source, whereas
another interaction length may  coincide with an odd multiple of
the coherence length of another frequency of the input broadband
source and so on, thereby resulting in a flatter SH broadband out-
put. The simulated results indicated 3 dB bandwidth (BW) of 187
and 196 nm with conversion efficiency of 1.052 and 1.043% in a
30 mm  long tapered slab of GaAs and ZnSe, respectively.
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Fig. 1. Geometry of double-tapered semiconductor slab showing the scheme of
second harmonic frequency conversion.

In this article, we have extended the concept of SHG through
TIR-QPM to a double-tapered configuration using GaAs as the slab
material and the simulated analysis shows quite impressive results
in terms of 3 dB BW as well as SH conversion efficiency. For a 30 mm
long double-tapered GaAs slab, exceptionally high BW of 573.6 nm
and a conversion efficiency as high as 1.929% have been obtained.
The influence of limiting factors, viz., Goos-Hänchen (GH) shift, sur-
face roughness and absorption, has also been taken care of in this
analysis. The dependence of SH conversion efficiency and its BW
on temperature, length and tapering angles of the semiconductor
slab has also been studied.

2. Proposed scheme

We  have considered a double-tapered semiconductor slab with
the base surface parallel to the horizontal plane. The upper surface
is made of two tapered sections connected end to end as shown in
Fig. 1. We  will call the first tapered section as forward tapered and
the second tapered section as reverse tapered. Both the forward and
reverse tapering angles, i.e., �1 and �2, respectively, are determined
by the vertical heights t1 and t2, t1 < t2, and the section lengths L1
and L2 as shown in Fig. 1. The reverse section length L2 is expressed
in terms of the forward section length L1 as L2 = � × L1, where � can
be either a positive integer or a positive fraction. The face on which
the fundamental laser radiations will be incident upon is cut at an
angle   with respect to a plane perpendicular to the horizontal
plane.

The fundamental broadband optical radiation having a cen-
tre frequency ω1 is incident at an angle �i with respect to the
normal on the inclined slab end face. Angle of incidence on the
horizontal plane inside the semiconductor slab will be determined
by the refractive index of the material as calculated using the
wavelength-dependent dispersion equation of the material [12].
If �1 is greater than the critical angle for the range of input fre-
quencies, then the collimated optical radiations will undergo total
internal reflections inside the tapered slab. The angle of incidence
and the length between successive bounces will go on increasing
with the propagation of the input broadband radiations through-
out the semiconductor slab up to forward section length, L1, after
which both the angle of incidence and the bounce length will go on
decreasing in the reverse section length, L2, till the beam emerges
out of the slab. Fig. 2 shows the variation of the bounce lengths with
respect to the number of bounces inside the slab corresponding to
the fundamental centre wavelength of 9.146 �m.  As explained in
our earlier work [11], the present scheme also corresponds mainly
to non-resonant QPM since the interaction lengths between succes-
sive bounces cannot be optimized to be equal to an odd multiple
of the coherence length for all the frequencies available in the
input band of fundamental laser radiations. But a situation may
arise wherein one length may  coincide with an odd multiple of
the coherence length of a particular frequency in the input band of
fundamentals, whereas another length may  coincide with an odd
multiple of the coherence length of another frequency in the band
and so may  not give rise to resonant QPM scenario. However, the

Fig. 2. Variation of bounce length with respect to number of bounces inside the
double-tapered slab.

conversion efficiencies of other frequencies will be lower for that
interaction length due to non-resonant QPM. This will result in a
flatter second-harmonic spectrum as already demonstrated in the
case of the tapered slab configuration. But the use of double-tapered
configuration has further elevated the possibility of a flatter 3 dB
BW also with improved conversion efficiency.

Now, for this double-tapered slab configuration (Fig. 1), the
equations for length between consecutive bounces for the forward
tapered section can be expressed as

Li = x cos  

sin(�r +  )
(1)

where Li is the length between the entrance point and the point
of first TIR point inside the slab, x is the slant distance of the
entrance point from the base of the slab and ϕr = sin−1[(sin ϕi)/nk],
where nk is the refractive index corresponding to each individ-
ual frequency of the input broadband laser radiation. The distance
between successive bounces can be expressed by the following
coupled equations:

l2 = x sin   + (x cos   tan ϕ) + t1 tan ϕ1 − t1 tan  

z′2n−1 = l2n−2 sin �1

cos ϕ2n−2
, n = 2, 3, . . .,  ntot

l2n = l2n−2 + z′2n−1 sin ϕ2n−3 + [(z′2n−1 sin ϕ2n−3)/ tan(�2 − ϕ2n−1)]
+2t1 tan ϕ2n−1, n = 2, 3, . . .,  ntot

z′2n+1 = l2n sin �1

cos ϕ2n
, n = 1, 2, 3, . . .,  ntot

L2n = t1
cos ϕ2n−1

+ l2n sin �1

cos ϕ2n
, n = 1, 2, 3, . . .,  ntot

(2)

L2n+1 = t1
cos ϕ2n+1

+
z′2n+1 cos ϕ2n−1

cos ϕ2n+1
, n = 1, 2, 3, . . .,  ntot (3)

Here

�1 = tan−1
(
t2 − t1
L1

)
(4)

ϕn = (n − 1)�1 + ϕ1, n = 1, 2, 3, . . .,  ntot (5)

where ϕ1 = �/2 – (ϕr +  ) and ntot is the total number of bounces
inside the tapered slab.

For the reverse tapered section, the bounce lengths can be
expressed with slight modifications in the expressions for the
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