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a  b  s  t  r  a  c  t

In the  present  work,  we  investigate  the  nonlinear  optical  properties  emerged  from  excitonic  features
in  an  experimentally  realized  spherical  parabolic  semiconductor  quantum  dot (QD).  The lowest  exciton
states  together  with  relevant  wave  functions  are  calculated  through  the expansion  method  with  direct
matrix  diagonalization  method  within  the  effective  mass  approximation.  The  effect  of  the  size of  QD  and
confinement  potential  in  exciton  state  is studied  in  details.  Results  show  that with  increasing  the  size of
the  QD  the  energy  of  exciton  decreases  because  of decreasing  of  the effect  of  coulomb  potential.  Using
the  compact  density  matrix  formalism  second  order  nonlinear  optical  rectification  (�(2))  are  obtained.
By  means  of the  applied  electric  and  magnetic  field  we  manipulate  the exciton  states  and  control  the
nonlinear  optical  response  in  a typical  GaAs,  InAs,  CdSe  QDs.  Our  model  system  presents  a  way  to  control
the  performance  of  excitonic  optoelectronic  devices  based  on  semiconductor  nanostructures.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

During past decades remarkable progresses in fabrication tech-
niques of semiconductor nanostructures pave the way  towards
the implementation of relevant optical phenomena [1–18]. Opti-
cal properties of semiconductor nanostructures offer a wide range
potential application for optoelectronic devices [19–23]. Interest-
ingly, semiconductor QDs (SQDs) have very important role for
device applications based on nonlinear optics. In this case, quan-
tized energy levels in each direction prevent carrier–reservoir
interaction in very high level. This leads to a lot of low noise pho-
tonic devices emerged from QDs [24,25].

It was shown that the exciton effects have remarkable effects
on the nonlinear optical absorption coefficient [26]. In the case of
SQDs the analysis of exciton states is inevitable due to the effect
of confinement of carriers that increases the oscillator strength of
electron–hole excitations. The enhancement of the binding energy
of excitons results in the stability of excitons even at room temper-
ature. Due to the importance of excitons for fundamental physics
and device application, it is necessary to control and manipulate
these states. The control of excitonic optical response can be done
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by the changing size, composition, and the geometry of QDs and
also by applying external electric and magnetic fields. Recently, a
number of theoretical investigations of excitonic effects in QDs have
been published (for example see references [27–29] and references
therein). Most of them are related to the studies of nonlinear optical
properties in parabolic or one-dimensional QD including the effect
of one of applied external fields. In reference [27] authors studied
the optical rectification in the presence of electric and magnetic
fields without taking the excitonic effect into account. The study of
exciton effects in the model spherical parabolic QDs in the presence
of both external fields is still rare.

The second order nonlinear optical rectification plays key role
due to its simplicity and lowest order nonlinear effect. We  focus
on the investigationion of the single particle and exciton spec-
trum under the effect of applied electric and magnetic field. The
density matrix approach within two  level system and effective
mass approximation are used to calculate the optical rectifica-
tion of the exciton. Our results present engineering the nonlinear
optical response of QDs to produce desirable nonlinear optical
rectification.

2. Theory

We  consider an electron and a hole moving in a spherical QD
confined in a parabolic confinement potential under electric and
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magnetic fields applied simultaneously in z direction. The Hamil-
tonian of this system with the effective mass approach reads [21]:
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where � is the frequency of parabolic confinement taken same for
electron and hole and F and B are external electric and magnetic
fields, respectively and other parameters have usual meaning.

In terms of the relative and center of mass coordinate the Hamil-
tonian can be rewritten as:

H = HR + Hr + Hc
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Indices r, R indicates relative and center of mass motions. One can
take the center of mass as the reference of energy and neglect Hc

that indicates the coupling of relative motion with center of mass
motion. Hamiltonian has spherical symmetry which implies that
the total orbital angular momentum, L, is a conserved quantity, and
the eignestates of the exciton in spherical (cylindrical) QDs can be
classified according to the total orbital angular momentum.

The total Hamiltonian can be diagonalized in the space by
expanding wave function with a fixed quantum numbers (n,l,m)
as:

˚m =
∑
i

ci i(�r) (4)

 i(�r) is 3D spherical harmonic oscillator eigenvectors as
 i(�r) = Rnili (�r)Ylimi (	, ϕ) with the corresponding eigenvalue Ei =(
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2.1. Optical response

The Hamiltonian of light-carrier interaction in a QD can be
described in dipole approximation and can be expressed in terms of
the relative coordinate and does not depend on the center of mass

Table 1
Values of physical parameters for three semiconductors: the electron mass me , the
hole mass mh .

me mh

GaAs 0.067m0 0.625m0

CdSe 0.13m0 0.22m0

InAs 0.023m0 0.41m0

coordinate. We  assume that interband transitions can be neglected,
so-that the matrix element of the polarization operator in the sec-
ond quantization is given by [30]:

P+
z = Mcv

∫
d3r +

e (�r) +
h

(�r) + h.c. (6)

where Mcv is the valence-conduction band dipole matrix element
and  +

e ,  +
h

are the electron, hole creation operators, respectively.
The relevant dipole matrix elements are those between vacuum
(
∣∣0〉

), exciton (
∣∣1〉

) states and denoted M12. Relevant dipole transi-
tion can be written as following well-known relation:
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Now, the oscillator strength of excitonic transition can be calcu-
lated (not shown here). By starting with equation of motion for the
density matrix of a two level system and applying some algebraic
manipulation, one obtain second order nonlinear optical rectifica-
tion (�(2)) of exciton as a two level system can be written as [17–19]:
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E21 indicates the transition energy, M21 denotes the dipole moment
element between two  levels. T1, T2 are dephasing times that we
take their magnitudes as 1 ps and 2 ps, respectively. 
v is electron
density in QD that is set to 5 × 1018 cm−3 [31].

3. Results and discussion

In this work we  consider the freestanding GaAs, CdSe and InAs
QDs. The relevant parameters used in the calculation are given in
Table 1. The behavior of exciton energy versus the QD radius is
depicted in Fig. 1. It is clear that by increasing the QD radius the
exciton energy is reduced because of the weakening of confinement
effect, also for small radii the effect of effective mass on exciton
energy is negligible while for larger QDs exciton energy has higher
value for bigger values of effective mass. From Table and arrange-
ment of curves in Fig. 1, it can be seen that the electron effective
mass plays main role in calculations to determine exciton energy.
Fig. 2 shows the second order nonlinear optical rectification versus
incident photon energy for different value of confining potential. It

can be seen that by increasing the confining potential the peak of
�(2) blueshiftted and its magnitude reduced. This behavior returns
to the reduction of electron–hole wave functions overlapping and
reduction of parameter M12 and increasing the single particle level
spacing. In Fig. 3 we present the frequency dispersion of �(2) around
the one photon resonance at ω = E21/�  for different values of
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