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a  b  s  t  r  a  c  t

Linear  kernel-driven  bidirectional  reflectance  distribution  function  (BRDF)  models  have  been  used  for
mapping  albedo  with  single  field-of-view  satellite  measurements  such  as  Moderate  Resolution  Imaging
Spectroradiometer  (MODIS).  Due  to limited  samplings  and  poor  angular  configurations  available  from
these  satellite  remotely  sensed  data, BRDF  models  inversion  is often  plagued  by numerical  instability.
In  order  to  overcome  the  ill-posedness  of  the BRDF  model  inversion  and  robustly  estimate  terrestrial
surface  albedo,  a regularization  technique  is employed  for the  cases  where  the  number  of  observations
is  insufficient,  or  the  angular  distribution  is  poor.  Emphasis  is also  placed  on  the  combination  of  a priori
knowledge  with  the  regularized  inversion.  Numerical  performances  and  case  study  results  with  ground
measurements  and  MODIS  observations  suggest  that  the method  is  sound  and  robust  for  ill-posed  BRDF
inverse  problems.  The  method  presented  in  this  study  is promising  for  land  surface  reflective  parameters
retrieval  even  for  regions  where  only  sparse  observations  are  available.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Electromagnetic wave reflected from the Earth’s surface at satel-
lite sensors level records signals not only from the underlying
surface but from the intervening atmosphere [1]. To better under-
stand the interactions between the surface and the atmosphere,
and its impacts on the climate due to land surface processes, it is of
necessity to extract land surface reflective parameters from orbital
observations. Methods for quantitative retrieval of information
of interests from remote measurements in the reflected domain
are a rapidly growing field and increasingly attract attention of
remote sensing and climate communities. For instance, land surface
BRDF can be estimated from satellite observations to capture the
directional distribution of the reflected radiance field. Correspond-
ingly, directional-hemispherical reflectance (which is also called
black-sky albedo, BSA) and bi-hemispherical reflectance (which is
also called white-sky albedo, WSA) can be obtained via perform-
ing integrals of BRDF in the viewing hemisphere and illumination
hemisphere, respectively [2,3]. These two kinds of albedos are of
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great importance and constitute indispensable input quantities for
climate models [4,5].

In quantitative remote sensing of terrestrial surface, the rela-
tionship between the state parameters x and collected observations
y mixed with the noise component εy can be established by a for-
ward model:

y = F(x) + εy (1)

where F is referred to as analytic BRDF models for land surface
parameters retrieval. Computing y given x is called forward prob-
lem while the mathematic process of inferring x from y is called
inverse problem (Fig. 1).

However, in geophysics and remote sensing sciences, inver-
sion problems are in nature ill-posed [6–10]. In fact, ill-posedness
always arises out of the lack of information needed for solving
inverse problems so that noises during the whole remote sensing
processes (e.g., inherent instrument noise, misregistration, incon-
sistent atmospheric correction, etc.) will cause instability in the
retrieval. To overcome this, a variety of studies that centered round
exploitation of additional constraints were carried out over last
decade. In order to obtain physically acceptable parameters, Li et al.
[9] addressed the importance of implanting a priori knowledge into
the BRDF model inversion. Practically, the a priori information can
be constructed from the collected spaceborne or airborne remotely
sensed data or in situ measurements. Incorporation of a priori
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Fig. 1. Forward and inverse model in quantitative remote sensing of terrestrial
surface.

information can increase numerical stability of the model inver-
sion by making the original ill-posed inverse problem well-posed
[9,11]. The multi-kernel least variance method (MKLV) developed
by Gao et al. [12], selects least variance of albedo from various BRDF
kernels as the best solutions and then combined these kernels as
the most appropriate BRDF model. It is reported that the MKLV
method is less sensitive to the sampling position and can operate
well in small sample size. However, the MKLV method cannot deal
with cases with less than three observations. Wang et al. [13,14]
imposed a priori information from pure mathematical perspectives
when performing regularized inversions. Quaife and Lewis [15]
applied temporal smoothness constraints on BRDF model inver-
sions using Lagrangian multipliers. Ways to obtain appropriate
regularization parameters are not detailed in the literatures. How-
ever, crude selection of regularization parameters would limit the
algorithm’s efficiency and its applications. Cui et al. [16] improved
the method for choosing regularization parameters and modified
the algebra spectrum of the BRDF kernel matrix (i.e., replace tiny
singular values with positive values after performing singular value
decomposition (SVD) of the BRDF kernel matrix) to stable the
BRDF model parameters estimates using the spectrum cut-off tech-
nique. Actually, the difference between these various approaches
relies on how rigorously additional information is mathematically
processed, and in particular, the uncertainties associated to this
additional information.

In this study, we investigate the role of regularization in retriev-
ing land surface reflective properties. In this paper, we  first give a
brief review of the selected BRDF model and a regularized inversion
strategy established in our previous work. Then we  extend the algo-
rithm presented by integrating some additional constraints on the
regularized BRDF inversion. Finally, selected case studies of BRDF
model parameters inversion and albedo retrieval are presented to
demonstrate the capability of our algorithm.

2. Algorithm description

2.1. Forward model

The forward model F in Eq. (1), needed for land surface BRDF
and albedo retrieval, has mathematically the following form:

r�(ϑs, ϑv, ϕ) = fiso,�Kiso + fgeo,�Kgeo(ϑs, ϑv, ϕ) + fvol,�Kvol(ϑs, ϑv, ϕ)

(2)

where ϑs, ϑv and ϕ are solar zenith angle (SZA), view zenith
angle (VZA) and the relative azimuth angle (RAA), respectively.
This semiempirical kernel-driven model describes the BRDF of a
pixel, r�, as a linear superposition of three types of kernels: (1)
isotropic scattering kernel Kiso, which denotes the Lambertian scat-
tering contribution and always equals to the constant of unity; (2)
geometric-optical surface scattering kernel Kgeo, which is derived
by Wanner et al. [17] from surface scattering and geometric shadow
casting theory [18]; and (3) volumetric scattering kernel Kvol , which
is derived by Roujean et al. [19] from a single-scattering approxi-
mation of radiative transfer theory [20]. The combination of these

kernels constitutes one of the most effective models for accurate
reconstruction of BRDF, and has been proved to be suitable for
most of the land cover types [2,3,21]. fiso, fgeo and fvol are Lambertian
coefficient, roughness coefficient, and volume scattering coefficient
respectively to be retrieved. In this study, the Ross–Li–Maignan
(RLM) BRDF model [21] is used to model spectral surface bidirec-
tional reflectance.

2.2. Ill-posedness of the inversion problem

With multiple cloudless measurements accumulated, Eq. (2) can
be expressed in matrix notation:

r̂m×1 = Km×nfn×1 + εr̂ (3)

Here, r̂ is the reflectance vector, f is the BRDF parameters vector,
K is the kernel matrix, m denotes the number of observations and
n denotes the number of kernels. Given measurements at known
angles, it is possible to invert Eq. (3) to obtain the kernel coefficients.
For the overdetermined case (i.e., m > n), the least squares estima-
tion may  be employed to minimized the impact of observations
errors. Then the aforementioned inverse problems can be solved
by

f̂ = arg min
{

1
2

||Kf − r̂||2D
}

(4)

where ||||2D denotes the 2-norm of a vector in the measurements
space D.

However, sampling geometry is a major source of uncertainty in
determining the BRDF shape. Noises due to insufficient samplings
or poor angular configuration will make the condition of the ker-
nel matrix K very large, and the so-called ill-posedness arises. This
means that the least squares solution (LSS) (4) is nonunique and
unstable. This can be made clear with the SVD of the kernel matrix
K:

Km×n = Um×n�n×nVT
n×n (5)

where matrices U and V are respectively with orthonormal columns
[u1, . . .,  un] and [v1, . . .,  vn], forming bases for the measurement
space and the solution space, respectively. � is a diagonal matrix
containing nonnegative singular values (�1, . . .,  �n) in decreasing
order. Because � is a diagonal matrix, the choice of these bases
yields a one-to-one correspondence between components of the
BRDF kernel coefficients and those of the measurements.

Substitution of Eq. (5) in Eq. (3) yields

r̂ =
n∑

i=1

�i

(
vT

i f
)

ui + εr̂ (6)

and the LSS can be written as

f̂ =
n∑

i=1

(
uT

i
r̂
)

�2
i

vi (7)

For indices i larger than a certain index p in Eq. (6), the �i are
so small that all the terms i > p do not have an effect on the mea-
surement within the measurement error εr̂. This means that the
measurement r̂  is insensitive to components vT

i
f of the parame-

ters f along base vectors vi for i > p. So, in LSS of Eq. (7), only the
first p terms play a role in the minimization of the residual norm.
When the number of observations is insufficient or the angular
distribution is poor, noise components in r̂ are divided by small
singular values, their contribution to the retrieved BRDF parame-
ters is amplified [16]. Hence, the task of the retrieval algorithm is
to filter out the noise-dominated components of the solution and
thus to retrieve only that part of the BRDF parameters about which
information is present in the measurements. This part of the BRDF
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