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a  b  s  t  r  a  c  t

In this  paper,  the  effect  of  various  taper  profiles  on  dispersion  slope  compensation  in  optical  fiber  links  is
studied. Theoretical  and  numerical  investigation  of  the  linear  and  nonlinear  group  delays  of  tapered  fiber
Bragg  grating’s  (T-FBG)  under  strain  is  made.  Calculation  is  performed  using  Matlab  code  based  on  solving
the  coupled  mode  equation  using  transfer  matrix  method.  Our  study  shows  that  the  linear  tapered  FBG
profile  provide  the  best  result  than  the linear-exponential  profile  which  can  compensate  up to  500  km.
As result,  the  spectral  characteristics  of tapered  grating  allow them  to  be  used  efficiently  in high  bit  rates
WDM  and  long-haul  optical  communication  systems  for chromatic  dispersion  of  single-mode  fiber.
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1. Introduction

Interest in fiber Bragg gratings (FBGs) has grown increasingly in
recent years due to their ease of fabrication and numerous applica-
tions in the field of optical fiber technology. In particular, they can
be efficiently used for dispersion compensation in high-speed long-
haul optical communication systems [1–3], short-pulse generation
and restoration [4,5]. Besides, FBGs can be used for the implemen-
tation of high-quality fiber laser cavities of various geometries [6,7]
and semiconductor diode stabilization [8]. Also, FBGs are spec-
tral filters based on the principle of Bragg reflection [9]. FBG, first
demonstrated by Hill et al. [10], is developed by inscribing peri-
odic refractive index modulation into the core of optical fiber using
intense ultraviolet (UV) source through interferometry, point-by-
point or phase mask technique [11]. The variation of the refractive
index gives rise to a photonic band gap inside their spectrum where
linear waves cannot propagate [12].

In long-distance optical communication systems, fiber group
velocity dispersion (about 17 ps/nm km for standard fibers)
degrades system performance by limiting either the maximum
bit rate or the distance length (less than 60 km for standard NRZ
format at 10 Gbps) [13]. For 10-Gbps transmission system, the dis-
persion slope caused high order group delay is negligible [14]; but
for high speed systems operating at 40 Gbps and beyond the dis-
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persion slope has to be compensated. In recent years, there has
been increasing interest in the study of linearly chirped fiber Bragg
gratings with different apodization profiles in order to be used as
compensator devices in high bit rate systems. Indeed, because fiber
Bragg gratings are easy to make, inexpensive, low-insertion loss,
compact, compatible with all fiber communication systems.

Of crucial importance is to study the dispersion characteristics
of tapered FBGs under strain or stress. In ref [14], the authors have
analyzed the dispersion characteristics of linearly tapered FBG. It
was demonstrated, theoretically and experimentally, that linearly
tapered FBGs display nonlinear group delay under strain, which
means that the linearly tapered FBGs can be used in dispersion slope
compensation.

In this work, using the same procedure of calculus as in ref. [14],
we discuss, theoretically and numerically, the dispersion and dis-
persion slope cancellation characteristics of two  types of tapered
FBGs having exponential–linear and parabolic profiles. Our  results
are compared to those reported in ref [14].

2. Theory

This section will carry out the mathematical analysis of the lin-
ear coefficient of the group delay and the quadratic coefficient
(dispersion slope) corresponding to the cases of exponential–linear
and parabolic tapered FBGs. The study will therefore be split into
the following two subsections.
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2.1. Exponential–linear tapered fiber Bragg grating

The radius along the linearly tapered fiber can be expressed as
[15].

R(z) = R0

[
e− z

z0 − z

z0
e−1
]

(1)

where R0 is the original radius of the fiber and z0 is the point along
the z axis where the radius of the tapered fiber may  come to zero.
The cross-section area of the grating at position z is given by

A(z) = � R(z)2 = � R2
0
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while tension F is applied to the fiber, the axial strain ε(z) at the
grating position z can be expressed as

ε(z) = F
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where E is Young’s modulus, and ε(0) = F/E � R2
0 is the strain at

position z = 0.
Therefore, the change of the period at original z point will be
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where �0 is the original period at position z = 0 without strain.
Hence, the period under tension along the z axis changes to

�(z) = �0 + ��(z) = �0 + ��(0)/
(
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When the taper slope is very small, that means z�z0, the relation-
ship between z and z′ can be expressed as

z′ = z + �� (0)
�0

z = z
(

1 + �� (0)
�0

)
(6)

To analyse of the group-delay characteristics, we  can rewrite Eq.
(6) in the form
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where ��(0) = �(0) − �0, When z�z0, we expand e− z
z0 − z
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e−1

in Taylor series around z = 0, we obtain
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by neglecting the term of order two in Eq. (8), we can rewrite Eq.
(7) in the form
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Expanding ((��(0)/(�(z) − �0))−1/2 in Taylor series at z = 0,
we obtain
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Using (6) and (10), we  obtain
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Considering the refractive index changes with the applied strain
because of the photo-elastic effect, the change of Bragg wavelength
at original point is given by [16]

��B(z) = ε(z)(1 − �) · �0 = ε(z)(1 − �)(1 − �) · 2neff �0

= ��(z)(1 − �)2neff (12)

where � is the photo-elastic effect and E is the Young’s modulus,
which describes the fiber lengthening effect (� = 0.22 for silica).

According to Eqs. (11) and (12), we  can express z′ as a function
of the Bragg wavelength variation
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The group delay experienced by a signal reflected from a partic-
ular position z′ of the grating is given by t = 2z′neff/c, where c is the
speed of light in vacuum. By substituting z′ in this definition of t, we
can obtain the function of group delay to wavelength as follows:
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2.2. Parabolic tapered fiber Bragg grating

In the case of a parabolic profile, the radius along the linearly
tapered fiber can be expressed as [15].

R(z) = R0

(
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)1/2
(15)

The cross-section area of the grating at position z is given by

A(z) = � R(z)2 = � R2
0 (1 − z/z0) (16)

The axial strain ε(z) at the grating position z can be expressed
as

ε (z) = F

E A (z)
= F
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0 (1 − z/z0)

= ε (0) /(1 − z/z0) (17)

The change of the period at original z point will be

��(z) = ε(z) �0 = ε(0) �0/(1 − z/z0) = ��(0)/(1 − z/z0) (18)

The period under tension along the z axis changes to
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Rewrite (19) as
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