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a  b  s  t  r  a  c  t

By  investigating  a particle  motion  in a three-dimensional  potential  barrier  with  moving  boundary,  we
find  that  due  to  an  alteration  of boundary  conditions,  the  wave  function  pick  up  an  additional  nonlocal
phase  factor  independent  on  the dynamics  of physical  system.  By  compare  the  nonlocal  phase  with
the  geometric  phase  of  the  physical  system,  furthermore,  we  find  that  the nonlocal  feature  of quantum
behavior  can  fully  be  described  by  its geometric  phase.
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1. Introduction

For a stationary quantum state, the wave function is only a prop-
erty of a statistical ensemble of similarly prepared systems and tells
nothing about the time evolution properties of individual physical
systems in terms of the probability interpretation. Thus, the state
vector from the physical system with a constant Hamiltonian in
the standard quantum mechanics is time-independent and does
not mean that individual system does not depend on time. It is
clear that, however, the observed world depends on the time [1,2].
Therefore, it is necessary to reconcile an observed time-dependence
with a time-independent wave function of the universe.

It is well-known the time-dependent quantum Hamiltonian
has been investigated for past several decades. Such a system has
also been shown to be a versatile tool for testing many concepts
and approaches used in quantum theory [3–7]. A serial of new
important discoveries or new applications has been obtained about
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the time-dependent quantum systems. Such as the path integral
method [8], the coherent and squeezed states [9,10], quantum tun-
neling in Josephson contacts and SQUIDs [11], the invariant theory
of time-dependent quantum system [12], the Zeno effect [13], the
geometric phase [14–23], and quantum traps and cavity QED [24].

Nowadays, a lot of time-dependent phenomena is witnessed
in quantum optics, quantum information theory, condensed mat-
ter physics and particle physics, such as the big bang theory [25],
neutrino oscillations [26] and time-dependent tunneling [27]. Such
phenomena reveal the facts that quantum non-stationary systems
have continually been a living and very interesting subject of quan-
tum physics from many different areas up to today.

Another interesting study is to observe the time-dependent
processes in mesoscopic quantum devices [28]. In the paper, we
investigate a particle motion confined in a three-dimensional infi-
nite square well with a time-dependent boundary in which appears
to be modeled by a quantum device. The result shows that dif-
ferently from a stationary boundary, the wave function picks up
an additional nonlocal phase factor. By comparing the phase fac-
tor with the geometric phase, we find that the nonlocal feature of
quantum behavior may  fully be described in terms of the geometric
phase.
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2. Quantum system with a moving three-dimensional
boundary

Let us consider a particle with mass m confined in a three-
dimensional infinite square well with a time-dependent boundary.
The time-dependent Schrödinger equation is given by
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where � and ϕ are azimuthal angles and r is radius coordinate,
while the potential energy function V(r, t) is defined to be zero if
0 ≤ r ≤ a(t), and infinite otherwise, i.e.,

V(r, t) =
{

0, 0 ≤ r ≤ a(t)
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, (3)

which can be simulated in the sense by a quantum device.
Suppose the potential boundary moves linearly at a constant

rate  ̌ in terms of a(t) = a0 + ˇt with a0 = a(0). Thus the wall speed
parameter  ̌ is positive for expanding and negative for contracting
wells. An exact solution to the Schrödinger equation (1) satisfying
the time-dependent boundary conditions may  be written as
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by the initial condition, while
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is an associated Legendre function.
It is obvious that �lnrml is an eigenstate of Hamiltonian (2), i.e.,
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Substituting Eq. (6) into Eq. (9), one has
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which leads to an exact solution, we  find
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under the condition,

a(t) = a0 + ˇt. (12)

From Eq. (11), we  see that the phase factor ˛lnr is not relation
to quantum number and depends only on the alteration of bound-
ary conditions. Therefore the phase factor is independent of the
dynamics of the physical system because there do not exist any
interaction or force. Thus, the phase factor is nonlocal and therefore
˛lnr is called as the nonlocal phase.

Thus the wave function (5) may  be exactly expressed as
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From Eq. (13), we see that a nonlocal phase factor is emerged
from the alteration of moving boundary. The space-dependent part
of the phase ensures that the particle moves in concert with the
packet and stays between the nodes. Especially, this exact solution
is valid for both fast or slow expansions and contractions.

The results imply that the wave function of a particle, described
by the time-dependent Schrödinger equation, is initially and finally
free may  pick up a phase factor by alteration of boundary con-
ditions. This alters the observable properties of the system even
though the particle has not come near the conning walls.

3. Guidance of the wave

According to the Bohm theory [1–3], an individual physical sys-
tem comprises not only a wave propagating in space and time
together with a point particle which moves continuously under the
guidance of the wave mathematically described by the Schrödinger
equation but also an extra information about the particle motion.
The guidance formula may  be expressed by

ṙ(t) = 1
m

∇S(r, t)|r=r(t), (14)

where S(r, t) is an action of physical system from the whole phase
of wave function (13), which may  be written as
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Using Eqs. (14) and (15), the particle moving trajectory may be
obtained by
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where the time-independent initial condition r(0) = r0 is used so
that ṙ(t) = ˇr0/a0 = constant. The speed varies linearly with the
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