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a  b  s  t  r  a  c  t

Multi-focus  image  fusion  combines  multiple  source  images  with  different  focus  points  into  one  image,  so
that  the  resulting  image  appears  all in-focus.  In  order  to improve  the accuracy  of  focused  region  detection
and  fusion  quality,  a novel  multi-focus  image  fusion  scheme  based  on  robust  principal  component  analysis
(RPCA)  and  pulse-coupled  neural  network  (PCNN)  is  proposed.  In  this  method,  registered  source  images
are  decomposed  into  principal  component  matrices  and  sparse  matrices  with  RPCA  decomposition.  The
local  sparse  features  computed  from  the  sparse  matrix  construct  a composite  feature  space  to represent
the  important  information  from  the source  images,  which  become  inputs  to PCNN  to  motivate  the  PCNN
neurons.  The  focused  regions  of  the  source  images  are  detected  by the  firing  maps  of  PCNN  and  are
integrated  to construct  the  final,  fused  image.  Experimental  results  demonstrate  that  the superiority  of
the  proposed  scheme  over  existing  methods  and  highlight  the expediency  and  suitability  of  the  proposed
method.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Multi-focus image fusion is a process in which images with dif-
ferent settings are integrated to produce a new image that contains
all relevant objects in focus, which is useful for human or machine
perception [1]. Image fusion schemes can be categorized into two
groups: spatial domain fusion and transform domain fusion [2].
The spatial domain fusion methods [3–5] are easy to implement
and have low computational complexity, but they may  produce
blocking artifacts and compromise the fusion quality. In contrast,
transform domain fusion methods [6–8] may  achieve improved
contrast and better signal-to-noise ratio [9] than spatial domain
fusion methods.

The pulse-coupled neural network (PCNN) is a novel visual
cortex-inspired neural network characterized by the global cou-
pling and pulse synchronization of neurons [10–12]. In image
fusion, the PCNN is a single layered, two-dimensional, laterally
connected neural network of pulse-coupled neurons, which are
connected with image pixels each other [13]. Many multi-focus
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image fusion methods based on PCNN have been proposed [14–17].
However, these methods are time consuming (parameters are most
adjusted manually) and ignore noise (noise may  affect the accuracy
of focused regions detection and compromise the fusion quality).

In order to avoid the problems mentioned above, a new method
based on robust principal component analysis (RPCA) and PCNN is
proposed. RPCA is an effective way to construct low-dimensional
linear-subspace representations from high-dimensional data such
as images [18]. RPCA decomposes an image into a low-rank matrix
which corresponds to the background and a sparse one which rep-
resents important image features [19]. T. Wan  et al. [20] have
investigated its potential application in multi-focus image fusion
and have achieved consistently good fusion results, but their
method requires longer computational time than traditional meth-
ods. In this paper, RPCA is employed to capture the features of
objects in source images and the local features of the sparse matrix
are computed to motivate the PCNN neurons. The sparse matrix
is computed through an in-exact augmented Lagrange multiplier
(IALM) method [21,22], a fast version of implementation for recov-
ering low-rank matrices. RPCA can improve the robustness of fusion
and the precision of selection of in-focus objects. The biological
characteristics of PCNN can take full advantage of the local features
computed from sparse matrices and improve the accuracy of the
determination of in-focus objects. The proposed method is robust
to noise interference and suitable to different fusion tasks.
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Fig. 1. Block diagram of proposed multi-focus images fusion framework.

The rest of the paper is organized as follows. In Section 2, the
new method based on RPCA and PCNN for image fusion will be
described in detail. In Section 3, extensive simulations are per-
formed to evaluate the performance of the proposed method. In
addition, several experimental results are presented and discussed.
Finally, concluding remarks are made in Section 4.

2. Multi-focus image fusion based on RPCA and PCNN

In this section, a novel method for multi-focus image fusion
is proposed. The proposed fusion framework is depicted in Fig. 1.
For simplicity, this paper assumes that there are only two source
images, namely IA and IB, the proposed method may  be used for
fusion of more than two source images, which are assumed to be
pre-registered. Image registration is not included in this frame-
work. The proposed fusion method consists of the following five
steps: vectorization of source images, vector decomposition, block
division and feature map  construction, construction of decision
matrix, and image fusion.

2.1. Vectorization of source images

As mentioned above, the data matrix D represents the source
image after vectorization. However, the time for completing RPCA
decomposition is affected by the vector form of input data matrix
D. In order to select the optimal vector form of this matrix, we
compare rates of RPCA decomposition on different vector forms.
The total running time includes both the time consuming step
of RPCA decomposition and vector conversion before and after
RPCA decomposition. For comparison, the multi-focus images are
converted to corresponding forms of input matrix before RPCA
decomposition. The sparse matrix of RPCA decomposition is con-
verted to a matrix corresponding to the source image after RPCA
decomposition.

Table 1 lists the running times for RPCA decomposition per-
formed on three different forms of several multi-focus images. It
can be seen that the running time for the form of D = I, I ∈ R

MN×1

is shortest for all images analyzed. The running time for the form
of D = [IAIB], IA, IB ∈ R

MN×1 is shorter than that of D = I, I ∈ R
M×N .

The multi-focus images analyzed are ‘Clock’ (size 512 × 512), ‘Pepsi’
(size 512 × 512), ‘Lab’ (size 640 × 480), ‘Disk’ (size 640 × 480),
‘Rose’ (size 512 × 384) and ‘Brain’ (size 256 × 256).

The source images {IA, IB}, IA, IB ∈ R
M×N are converted

into column vectors IA, IB ∈ R
MN×1, respectively, before RPCA

Table 1
Comparison of the running time for RPCA decomposition of multi-focus images.

Multi-focus
images

Vector format

D = I, I ∈ R
M×N D = I, I ∈ R

MN×1 D = [IAIB], IA, IB ∈ R
MN×1

Clock 10.2310 0.3794 1.0003
Pepsi 9.7374 0.3884 1.0153
Lab 21.0188 0.4562 1.1663
Disk 17.3640 0.4460 1.1848
Rose 8.0979 0.3143 0.7859
Brain 2.4941 0.1329 0.2775

decomposition. Column vectors IA, IB ∈ R
MN×1 are decomposed

into principal matrices AA, AB ∈ R
MN×1 and sparse matrices

EA, EB ∈ R
MN×1 by RPCA, respectively. The sparse matrices

EA, EB ∈ R
MN×1 are computed through the inexact augmented

Lagrange multipliers algorithm (IALM) of RPCA [22], which has
been reported to yield similar results to other low rank matrix
recovery methods with much less consumption. The sparse matri-
ces EA, EB ∈ R

MN×1 are then converted into matrices EA, EB ∈ R
M×N

corresponding to source images IA and IB, respectively. Thus, D is
given by:

D = I, I ∈ R
MN×1 (1)

where D ∈ R
MN×1 is the input matrix for the RPCA model. DA and

DB (DA, DB ∈ R
MN×1) are the source images after vectorization.

2.2. Vector decomposition based on RPCA

RPCA decomposition is performed on vector D to obtain a prin-
cipal matrix A ∈ R

MN×1 and a sparse matrix E ∈ R
MN×1. The sparse

matrix E is computed by IALM and then converted into a M × N
matrix. Thus, EA and EB (EA, EB ∈ R

M×N) corresponding to the source
images can be obtained.

2.3. Block division and feature maps construction

Sparse matrices EA and EB are next decomposed into blocks.
Let E(k)

A and E(k)
B denote the kth block of sparse matrices EA and

EB, respectively. The EOL of each matrix block can be calculated as
follows [23]:

EOL =
∑

i

∑
j

(E2
ii + E2

jj) (2)

Eii + Ejj = −E(i − 1, j − 1) − 4E(i − 1, j) − E(i − 1, j + 1)

− 4E(i, j − 1) + 20E(i, j) − 4E(i, j + 1) − E(i + 1, j − 1)

−4E(i + 1, j) − E(i + 1, j + 1) (3)

where E(i, j) indicates the value of the element at the position
(i, j) in the sparse matrix block. Let EOLEA

(k) and EOLEB
(k) be the EOL

of E(k)
A and E(k)

B , respectively. The EOL of corresponding blocks of
the two  sparse matrices constructed the feature maps FA and FB,
respectively.

2.4. Construction of decision matrix based on PCNN

FA and FB become the input to PCNN to motivate the neurons and
generate neuron pulses. Let TA(k) and TB(k) denote the firing time
of the kth feature element in feature maps FA and FB, respectively.
Thus, a decision matrix H ∈ R

M×N can be constructed for recording
the comparison results according to the selection rule as follows:

H(i, j) =
{

1 TA(k)≥TB(k)

0 otherwise
(4)

where “1” in H indicates that the pixel (i, j) of the kth block of
image IA is in focus while “0” in H indicates that the pixel (i, j) of
the kth block of image IB is in focus.

2.5. Image fusion based on decision matrix

However, judging by firing times of the PCNN alone is not suffi-
cient to identify all focused blocks. There are also thin protrusions,
narrow breaks, thin gulfs and small holes in H. Morphological
operations [24] are performed on H to eliminate the defects in H.
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