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a  b  s  t  r  a  c  t

Phenomenon  of coupled  tapering/uptapring  of two mutually  incoherent  beams  coaxially  co-propagating
in  a  nonlinear  medium  with  small  gain  or loss  has  been  investigated  in this  paper using  standard  parabolic
equation  approach  (PEA)  and  the results  are  compared  with  the  results  obtained  by Beam  Propagation
Method  (BPM),  i.e.,  by  direct  simulations  of  the  underlying  Nonlinear  Schrödinger  Equation  (NLSE).  The
PEA results  are  shown  to  be  in  excellent  agreement  with  the  BPM  results.  It  is  seen  that  both  beams  of
the pair  induce  uptapering  in each  other  in  presence  of losses  and  tapering  in  presence  of gain.  When  the
medium  offers  gain  to the  first beam  and  losses  to  the  other,  both  beams  taper.  When  the  medium  offers
gain/absorption  to only  one  of  the  two beams,  the  beam  undergoes  self-tapering/self-uptapering  and
induces  a taperd/uptaperd  waveguide.  The  other  beam  (for which  the  medium  is  lossless)  uptapers/tapers
due  to  the  taperd/uptaperd  waveguide  created  by  the  first  beam.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

When two optical beams propagate in a nonlinear medium,
they manipulate each other as their propagation is coupled through
nonlinearity. Coupled propagation in nonlinear media has been a
subject of high interest as it is indispensable in all-optical switching
devices (see for example, Refs. [1–5]).

In addition to coupled propagation, all-optical manipulations of
light are of high importance owing to their potential applications in
the fields ranging from communication to computing. Hence, self-
tapering/uptapering of optical beams should be of great importance
as it is the only means of all-optical control of width of an optical
beam without using any fabricated structure [6]. Moreover, a taper-
ing/uptapering beam can induce a tapered/uptapered wave guide
for a low power signal beam.

It is known that when a solitonic beam enters into a nonlinear
medium which has small absorption or gain, it tapers or uptapers
depending upon the initial conditions [7]. Self-tapering/uptapering
of solitons has been predicted/investigated in past for one soli-
tonic beam in different media like, Kerr medium [6] saturable Kerr
medium [7,8] in elliptic core fiber [9] and cubic-quintic medium
[10]. Recently, two beam tapering/uptapering has also been inves-
tigated in a Kerr medium [11].

Though, important from the point of view of basic as well
as applied research, the phenomenon of self-tapering/uptapering
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could not catch the attention which it deserves. Only a couple of
groups (Snyder et al., Sodha et al., Medhekar et al.) have worked
on this phenomenon. This might be due to the use of approxi-
mate methods in all previous works. Confirmation of the results of
approximate method by direct simulation of the underlying NLSE
would make them reliable among scientific community.

In view of it, for the first time, we  have investigated cou-
pled tapering/uptapering phenomenon by direct simulations of the
underlying Nonlinear Schrödinger Equation (NLSE).

Approximate method of Ref. [11] has also been used to inves-
tigate the same phenomenon which is based on well known
parabolic equation approach (PEA). It is shown that the predictions
of the PEA are in excellent agreement with those obtain by direct
simulations. The main aim of the present paper is to establish reli-
ability of the results reported on tapering/uptapering phenomenon
using approximate methods. The paper is being published in the
hope that it would stimulate further theoretical and experimental
research on self-tapering/uptapering which is the only means of all-
optical manipulation of beam widths without using any fabricated
structure and which is a partially explored phenomenon.

As done in Ref. [11], we obtain propagation equations of the two
coupled beams using approximate method (PEA). We  then investi-
gate coupled tapering/uptapering of soliton pairs in absorbing/gain
medium using both PEA and BPM for different physical situations.

2. Propagation equations using PEA

The intensity distribution of two  coaxial co-propagating
1-D Gaussian beams of angular frequencies ω1 and ω2
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respectively along the z-axis may  be expressed as; A2
1(Z) =

(E2
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1 f 2
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2(Z) = (E2
02/f2) exp(−S2/(r2

2 f 2
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where A1 and A2 are the space dependent real amplitudes of the
electric vectors of two beams of angular frequencies ω1 and ω2 and
s is the transverse variable coordinate. r1, r2 represent dimensions
of these beams at Z = 0. f1, f2 are the dimensionless beam width
parameters of the beams which are initially equal to 1 (at Z = 0).

The beam width parameters f1 and f2 change as per beams
evolution with the propagation distance and hence, r1f1 and r2f2
give dimensions of the beams at a distance Z. When the beams
propagate through the nonlinear medium, they modify the dielec-
tric constant of the medium as ε(ω1) = ε10 + �1(A1A2) and ε(ω2) =
ε20 + �2(A1A2) where ε10 and ε20 are the linear part of the dielec-
tric constants at frequencies ω1 and ω2 respectively and �1 and �2
are the nonlinear parts. For Kerr type nonlinear medium, �1 and
�2 may  be expressed as �1 = (˛1A2

1 + k˛2A2
2), �2 = (k˛1A2

1 + ˛2A2
2)

[11,12] here ˛1 and ˛2 are constants with their ratio equal to the
ratio of the nonlinear coefficients of the medium at frequencies
ω1 and ω2 respectively (˛jA

2
j
; j = 1, 2 is dimensionless electric field

intensity), k is coupling or interaction coefficient of the two beams
that depends on the experimental conditions.

Following the mathematical treatment of Ref. [11], i.e., using
PEA, coupled propagation equations for the two beams are obtained
as;
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Here ˛j = nojn2; noj = √
εjo is the linear refractive index of the

medium and n2 is the nonlinear coefficient, k1 and k2 are the prop-
agation constants. Thus Eqs. (1) and (2) can be written as;
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The set of coupled Eqs. (3) and (4) governs the evolution of
beams’ widths of the two beams with the propagation distance in
a loss less medium.

If the medium is not loss less for the two beams, i.e., if the
medium is having finite losses or gains, the intensity distribution
of two coaxial co-propagating beams may  be rewritten as;

A2
1(Z) = ((E2

01�1)/f1) exp(−S2/(r2
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1 )) and A2
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((E2
02�2)/f2) exp(−S2/(r2

2 f 2
2 )) where, �j = exp(KjZ) is the loss/gain

parameter, a positive Kj signifies gain, while a negative Kj signifies
loss. Starting with above space dependent real amplitudes of the
electric vectors and following the same mathematical procedure,
Eqs. (3) and (4) are modified as;
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3. Beam Propagation Method (BPM)

In BPM, the underlying propagating equations for two coupled
beams co-propagating in a loss less/gain less Kerr medium are
expressed as [15]
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The solitonic solutions of Eqs. (7) and (8) in BPM are given by;

E1 = E01 sech
(

S

r1

)

E2 = E02 sech
(

S

r2

)

here, E01, E02 are the axial electric fields of the two  beams. To know
the evolution of the fields’ envelopes of the two  beams along the
propagation direction, Eqs. (7) and (8) are solved using split step
Fourier method [13,14].

However, the set of equations describing two  coupled beams
co-propagating in a medium with finite loss or gain is
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here, ˇ1, ˇ2 signify gain or loss of the two  beams depending on their
positive or negative signs respectively.

4. Results and discussion

We  first investigate the phenomenon using PEA. The consid-
ered parameters for solving Eqs. (3)–(6) are f1 = f2 = 1, ω1 = ω2 =
2.7148 × 1015 rad/s, n0j = 1.63, and the nonlinear coefficient n2 =
514 × 10−20 m2/W [16]. When the two  beams are coming from two
different laser sources, they have random phase fluctuations with
respect to each other and interaction coefficient for such a case
(our case) is equal to unity, i.e., k = 1 [1]. We  stress here that the
described phenomenon is not limited to the above parameters and
one may  chose any other appropriate set of parameters.

Creation of soliton pairs is essential to investigate coupled self-
tapering/uptapering phenomenon. When the widths of the two
beams are given, their axial field requirement for solitonic pairing
could be known by putting LHS of Eqs. (3) and (4) equal to zero [11].
For beams’ widths r1 = r2 = 5 �m,  the axial electric fields for solitonic

pairing are obtained as E01 = E02 =
√

2.912 × 1013 V/m. The cho-
sen electric fields and widths correspond to the Gaussian profile
shown by solid curve in Fig. 1. With these parameters, Eqs. (3) and
(4) give evolution of beam widths (Wj = rjfj) with the propagation
as shown in Fig. 2. In the figure, overlapping W1 and W2 are con-
stant with the propagation distance which confirm the formation
of a solitonic pair.

We  go further and investigate coupled self-tapering and upta-
pering of soliton pairs. The meaning of self-tapering/uptapering has
been explained in earlier literature, however, we discuss it in brief
here for the sake of clarity.

Self-tapering/uptapering of optical beams is the only means of
all-optical control of beam width without using any fabricated
structure. It is known that a solitonic beam does not change
its width (and also intensity) while propagating through a loss
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