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A B S T R A C T

McNamara et al. (2012) claim to provide an explanation of certain systematic deviations from rational behavior
using a mechanism that could arise through natural selection. We provide an arguably much simpler mechanism
in terms of computational limitations, that performs better in the environment described by McNamara et al.
(2012). To argue convincingly that animals’ use of state-dependent valuation is adaptive and is likely to be
selected for by natural selection, one must argue that, in some sense, it is a better approach than the simple
strategies that we propose.

1. Introduction

Although much animal behavior can be understood as rational, in
the sense of making a best response in all situations, some systematic
deviations from rationality have been observed. For example, Marsh
et al. (2004) presented starlings with two potential food sources, one
which had provided food during “tough times”, when the birds had
been kept at low weight, while other had provided food during “good
times”, when the birds were well fed. They showed that the starlings
preferred the food source that had fed them during the tough times,
even when that source had a longer delay to food than the other source.
Similar behavior was also observed in fish and desert locusts (Aw et al.,
2009; Pompilio et al., 2006).

McNamara et al. (2012) claim to provide an explanation of this
behavior using a mechanism that could arise through natural selection.
They provide an abstract model of the bird-feeding setting where a
decision maker can choose either a “risky” action or a “safe” action.
They also provide a mechanism that takes internal state into account
and can lead to good results (where, in the example above, the internal
state could include the fitness of each source). However, as we observe,
for the particular parameters used in their model, there is a much better
(in the sense of getting a higher survival probability) and much simpler
approach than their mechanism that does not take the internal state
into account: simply playing safe all the time. It is hard to see how the
mechanism proposed by McNamara et al. could arise in the model that
they use by natural selection; the simpler mechanism would almost
surely arise instead.

The fact that always playing safe does well depends on the parti-
cular parameter settings used by McNamara et al. Playing safe would

not be a good idea for other parameter settings. However, we show that
a simple 2-state automaton that more or less plays according to what it
last got also does quite well. It does significantly better than the
McNamara et al. mechanism, and does well in a wide variety of settings.
Although our automaton also takes internal state into account (the in-
ternal state keeps track of the payoff at the last step), it does so in a
minimal way, which does not suffice to explain the irrational behavior
observed.

It seems to us that to argue convincingly that the type of mechanism
proposed by McNamara et al. is adaptive and is likely to be selected for
by natural selection, and thus explains animals’ use of state-dependent
valuation, then one must argue that, in some sense, it is a better ap-
proach than the simple strategies that we propose. Now it could be that
the simple strategies we consider do not work so well in a somewhat
more complicated setting, and in that setting, taking the McNamara
et al.'s approach does indeed do better. However, such a setting should
be demonstrated; it does not seem easy to do so. In any case, at a
minimum, these observations suggest that McNamara et al.'s explana-
tion for the use of state-dependent strategies is incomplete.

We should add that we are very sympathetic to the general ap-
proach taken by McNamara et al., although our motivation has come
more from the work of Wilson (2015) and Halpern et al. (2012, 2014),
which tries to explain seemingly irrational behavior, this time on the
part of humans, in an appropriate model. That work assumes that
people are resource-bounded, which is captured by modeling people as
finite-state automata, and argues that an optimal (or close to optimal)
finite-state automaton will exhibit some of the “irrational” behavior
that we observe in people. (The 2-state automaton that we mentioned
above is in fact a special case of a more general family of automata
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considered in Halpern et al. (2012); see Section 3.3.) We believe that
taking computational limitations seriously might be a useful approach
in understanding animal behavior, and may explain at least some ap-
parently irrational behavior.

The rest of this paper is organized as follows. In Section 2, we re-
view the model used by McNamara et al. (2012) and compare it to that
of Halpern et al. (2012). In Section 3, we describe four strategies that an
agent can use in the McNamara et al. model, under the assumption that
the agent knows which action is the risky action and which is the safe
action. One is the strategy used by McNamara et al.; another is a sim-
plification of the strategy that we considered in our work; the re-
maining two are baseline strategies. In Section 4, we evaluate the
strategies under various settings of the model parameters. In Section 5,
we consider what happens if the agent does not know which action is
risky and which is safe and, more generally, the issue of learning. We
conclude in Section 6.

2. The model

McNamara et al. (2012) assume that agents live at most one year,
and that each year is divided into two periods, winter and summer.
Animals can starve to death during a winter if they do not find enough
food. If an agent survives the winter, then it reproduces over the
summer, and reproductive success is independent of the winter beha-
vior.

A “winter” is a series of T discrete time steps. At any given time, the
environment is in one of two states: G (good) or S (sparse); the state of
the environment is hidden from the agent. At every time step there is a
small probability z of the environment switching states. At each time
step, there are two actions potentially available to the agent, A (which
we think of as the “risky” action) or B (the “safe” action). (The names
“safe” and “risky” are due to the fact that the reward swings, depending
on whether the environment is good or scarce, are greater for A than for
B.) With probability γ, both options are available to the agent; with
probability (1− γ)/2, the agent must play A; and with probability
(1− γ)/2, the agent must play B. The payoff of actions A and B depends
on whether the state of the environment is G or S.

An agent has a certain level of “energy reserves”, denoted by an
integer between 0 and 10. The maximum level of energy reserves is thus
10; an agent dies if his energy reserve level is 0. At each time step, one
unit of energy reserves is consumed. At each time step, an agent re-
ceives 0, 1 or 2 units of energy. The probability of each of these
amounts is drawn from a binomial distribution bin(2, p) (so that the
probability of receiving 0 units is (1− p)2, the probability of receiving
1 unit is 2p(1− p), and the probability of receiving 2 units is p2), where
p depends on the current environment state and the choice of action.
PGA is used to denote the probability p when the environment is in state
G and the agent plays action A; we can similarly define PGB, PSA, and
PSB. McNamara et al. assume that rewards are higher in expectation in
the good environment for both actions, that is, PGA≥ PSA and
PGB≥ PSB); moreover, A is the better action in the good environment,
while B is better in the sparse environment, so PGA≥ PGB and
PSB≥ PSA.

It is interesting to compare this model to that used by Halpern et al.
(2012). Although, we mentioned in the introduction, their goal was to
study irrational behavior in humans, and the kinds of behaviors con-
sidered were quite different from those considered by McNamara et al.
(the focus was on modeling the behavior in game playing reported by
Erev et al. (2010)), the models are surprisingly similar. The main dif-
ferences between the two models is that, in the model of Halpern et al.
(2012), an agent's objective is to maximize his expected average payoff
over rounds (rather than just to maximize the probability of surviving
for a year). Agents never die; and an agent's utility is taken to be the
limit of his average reward per round over an infinite time horizon. In
the language of McNamara, Trimmer, and Houston, Halpern, Pass, and
Seeman take γ=1, so that both actions are always available. Moreover,

instead of observing the payoff (which is deterministically dependent
on the state of the world), an agent gets a signal correlated with the real
state of the environment when he plays A, and no signal when he plays
B. As discussed by Halpern et al. (2012), getting a noisy payoff as in the
McNamara et al. (2012) model has essentially the same effect as getting
a signal correlated with the environment's state. As we discuss later, in
the scenarios we study here, PGB and PSB are very close and thus the
signal we get about the environment by playing B is very weak in this
model as well.

3. Four strategies

In this section, we describe four strategies that an agent can use in
the McNamara et al. model. We will be interested in the probability that
an agent survives a “winter” period using each of these strategies. Note
that the higher this probability is, the greater the probability that this
strategy will emerge as the dominant strategy in an evolutionary pro-
cess.

3.1. Baseline strategies

We consider two baseline strategies. The first is called the oracle
strategy. With this strategy, we assume that an agent knows the true
state of the environment before choosing his action, and thus can make
the optimal choice in each round. While this strategy cannot be im-
plemented by an agent in this model, we use it to provide an upper
bound on the the survival probability of the agent. Clearly, no strategy
can do better than the oracle strategy.

The second baseline strategy we consider is the safe strategy. With
the safe strategy, the agent always plays the safe action (B) when that
choice is available (recall that in some rounds the agent is forced to play
A).

3.2. The value strategy

The strategy studied by McNamara et al. (2012), which we call the
value strategy, is based on keeping a value V(·) for each of the actions
and choosing the action with the highest value in each round. This
value is updated in every round using the formula

= − +V β V βw(1 )new old , where β is a fixed parameter controlling the
learning rate and w is the perceived reward, which is defined in more
detail below.

In a little more detail, V(i) is initialized to the expected energy re-
ward of action i. In a round where action i is performed, V(i) is updated
using the formula above (taking Vold(i) to be the currently stored value
of V(i) and Vnew(i) to be the updated value), where =

−w uek r( 5), u is the
number of energy units received as a result of performing action i, r is
the current reserve level, and k is a fixed constant that might evolve to
match the scenario parameters.

In a round where the agent can play both A and B (which will be the
case with probability 1− γ), it plays whichever one has higher value.
That is, it plays A if V(A)≥ V(B), and otherwise plays B.

3.3. The automaton strategy

The last strategy we consider is inspired by the strategy used by
Halpern et al. (2012); we call it the automaton strategy. With the auto-
maton strategy, an agent keeps an internal state that is correlated with
the number of good and bad signals it has seen recently. Thus, the in-
ternal state is not determined by the agent's internal reserves, but rather
by recent observations. This strategy is described by a finite automaton
with n states denoted [0, …, n− 1]. If the automaton has a choice, then
it plays action B (the “safe” action) in state 0 and plays action A in all
the remaining states. (Thus, if the automaton has only one state, it plays
the safe strategy.) The automaton changes state depending on the signal
it observes. Halpern, Pass, and Seeman assumed that an automaton in
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