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a  b  s  t  r  a  c  t

We  understand  time  through  our  models  of it.  These  are typically  models  of our  physical  chronometers,
which  we  then  project  into  our  subjects.  A  few  of  these  models  of the nature  of  time and  its effects  on  the
behavior  of  organisms  are  reviewed.  New  models,  such  as  thermodynamics  and  spectral  decomposition,
are  recommended  for  the  potential  insights  that they  afford.  In all cases,  associations  are  essential  features
of timing.  To make  them,  time  must  be  discretized  by stimuli  such  as hours,  minutes,  conditioned  stimuli,
trials,  and contexts  in general.  Any  one  association  is seldom  completely  dominant,  but  rather  shares
control  through  proximity  in a  multidimensional  space,  important  dimensions  of which  may  include
physical  space  and time  as  rendered  by  Fourier  transforms.
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1. Introduction

The senses provide us not with a picture of the external world
but with a model of it. They serve not to achieve verisimilitude
(whatever that might be) but to facilitate our interaction with
it. (Treisman, 2006, p. 222)
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Time and association are the central concepts of this sympo-
sium. Both carry heavy burdens of connotative meaning. Their
meanings are entangled. For events to be associated they must
share, it is said, a certain relationship in time. For time to man-
ifest, it must be associated with events. A respected approach to
untangling difficult conceptual issues, such as wave-particle dual-
ity, is to adopt the school of thought called “shut up and calculate”.
In behavioral psychology, its operant avatar is “shut up and rein-
force”. The reaction to this paper from some readers will be an even
more parsimonious school of thought, “shut up and go away”. This is
because its contents will be most easily understood as non-sense,
to those whose sense of sense has been schooled in the schools
from which we all have matriculated. Those who take time to con-
sider the ideas are welcomed as associates on this strange voyage
in search of time.

1.1. Mathematical vs. common time

If you are asked to define time, your definition would probably
resonate with Newton’s postulate: “true and mathematical time
flows equably without regard to anything external, and by another
name is called duration”. This is our culture’s default model of time.
Its conjugate, relative or common time, is known directly, by sen-
sible externals, moves unequably, and with duration measured in
terms of the change in location of objects—in terms of motion. To
which time does the title of this symposium refer, mathematical
time, or common time? If the former—absolute, true, and mathe-
matical time—where is it to be found? In mathematical equations?
In those, time is the argument; infinitesimal changes in it are the
denominators of physics’ multitude of differential equations. Time
is always the thing with-respect-to-which change is evaluated;
always the stage, seldom the play, and never the actor, for things
only happen in time, not because of time. Nothing in physics says
that time flows, except Newton’s singular postulate that it does.
But what are the banks and bed of that river? Which way  does it
flow? Does it meander? Nothing in basics physics requires t2 to
come after t1 (although the principle of least action does require
smooth monotonic flow). We  arrange things that way on a graph,
whenever that makes them look simpler. Physics does not tell us
how to get from t1 to t2: “Just wait, and it will surely happen” is the
best any physicist might do.

Perhaps we can find true time in the vibration of cesium atoms,
humming in unison at the national bureau of standards. There, on
an office wall we may  find a graph and caption that looks like that
in Fig. 1.

Three things are notable about these data: (1) time is measured
by means of recurrent motion; (2) the motions are not equable:
their periods support error bars, and drift over days; (3) measure-
ment does not include allowance for the linear frequency drift of
the ensemble. Our best current standards thus measure common
time. What then is mathematical time, and is it relevant to psy-
chology? Mathematical time is a hypothetical construct, which,
along with absolute space, constitutes the framework of classical
mechanics, wherein “time is defined so that motion looks simple” (J.
A. Wheeler, cited in Doughty, 1990, p. 29). In its modern guise, how-
ever, it is less commonsensical than common time. This is because
we commonly think of true time as linear; or if not linear, at least
a monotone dimension along which we can order events. But Ein-
stein showed that mathematical time does not itself flow equably:
The period of a clock dilates with the clock’s velocity relative to a
stationary observer. He showed that the concept of “simultaneous”
is incoherent across distance; and that the temporal sequence of
two events can be different for different observers. In sum, mathe-
matical time is intrinsically dependent on the position and motion
of an observer, and thus different for every observer. t2 does not
always come after t1.

Fig. 1. Reproduced from Allan et al. (1972), shows the best contemporary approxi-
mation of common time to mathematical time. Reproduced with IEEE’s permission
and payment.

Common time is based on motion. Sometimes the motion is lin-
ear, as sand or water through apertures. But most often time is
abstracted from periodic motion, from oscillations. Indeed, even
the hourglass must be periodically inverted, and water clock
periodically refilled; and it is at those turns that information is
concentrated, associations made. The rotation of the earth gives
days, the revolution of the moon gives months, and the revolu-
tion of the earth around its common center of gravity with the sun
gives seasons and years. But gravitational interactions among these
bodies affect earth’s periods. The standard of ephemeris time is
computed in such a way to minimize the errors in imputing a com-
mon underlying time to all these oscillations; time is thus derived
as the principle component of celestial oscillations.

Division is always more difficult than addition. The length of
Roman hours, based on the sundial’s division of the day, varied
with the seasons. Division of the year into months consistent with
lunar cycles proved impossible, various attempts yielding the vari-
ous calendric systems of extended time. By counting the oscillations
of a pendulum, medieval church bells enforced a common, falli-
ble time—for all within earshot. In recent ages, divers communities
kept reliable local times, often at odds with the time of other nearby
communities. In modern times reliability has been vastly improved
by finding ever-faster oscillators and more accurate counters—and
improved again by averaging ensembles of cesium oscillators. Com-
mon  time is now the principle component of atomic oscillators.
When it drifts sufficiently out of calibration with mundane yard-
sticks, the definition of one or the other—the year or the second or
the clock—is then adjusted. Such common time has become essen-
tial for commerce, transportation, communication, and geodesy.
Because of the expansion of the universe, with all other celestial
bodies moving at different velocities than our solar system, it is
disjoint from the time measured in other galaxies. Common time
is an artifact, no less than mathematical time. But it is a directly, if
diversely, measured artifact. “Absolute, true time” is inferred for use
as the denominator for the rate equations of physics and chemistry,
stipulated to make the mathematics consistent. What is important
about common time is not that it approximates an absolute, true
and mathematical time. On the contrary. What is important about
it is that it is common. It is close to us, our perceptions, our behav-
ior, and close to our community. It is what we evolved to sense as
the stage upon which stance unfolds into action.
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