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a  b  s  t  r  a  c  t

An  exact  treatment  of  beam  optics,  starting  ab initio  from  the  Maxwell’s  equations  is  presented.  The
starting point  of  this  approach  is a matrix  representation  of  the  Maxwell’s  equation  in  a  medium  with
varying  permittivity  and  permeability.  Formal  expressions  are  obtained  for the  paraxial  and  leading
order  aberrating  Hamiltonians,  without  making  any  assumptions  on  the  form  of the  varying  refractive
index.  We  derive  the  wavelength-dependent  contributions  at  each  order,  starting  with  the  lowest-order
paraxial  Hamiltonian.  To  illustrate  the  general  theory,  we  consider  the  computations  of  the transfer  maps
for  an  axially  symmetric  graded-index  medium.  For  this  system,  in  the  traditional  approaches,  one  gets
only  six aberrations.  In  our  formalism,  we get  all the  nine  aberrations  permitted  by  the axial  symmetry.
The  six  aberrations  coefficients  of  the  traditional  approaches  get modified  by  the  wavelength-dependent
contributions  and  the  remaining  three  are  pure  wavelength-dependent.  It  is  very  interesting  to note  that
apart  from  the  wavelength-dependent  modifications  of  the  aberrations,  this  approach  also  gives  rise  to  the
image  rotation.  The  present  study  is the  generalization  of  the traditional  and  non-traditional  prescription
of Helmholtz  optics.  In the  low  wavelength  limit  our  formalism  reproduces  the  Lie  algebraic  formalism
of optics.  The  present  study  further  strengthens  the  close  analogies  between  the  various  prescriptions  of
light  optics  and  charged-particle  optics.  The  new  formalism  presented  here,  provides  a natural  framework
to study  beam-optics  and  polarization  in  a  unified  manner.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Several formalisms are available for the scalar wave theory of optics. Oldest among these is based on the beam-optical Hamiltonian
derived using the Fermat’s principle. It is well-known that the Maxwell’s theory of electromagnetism is the correct theory of light. So, it
is natural to develop a beam-optics formalism based on the Maxwell’s equations. This is often done using the Helmholtz equation. In this
approach, one takes the square-root of the Helmholtz operator followed by an expansion of the radical [1–3]. It should be noted that the
square-root approach reduces the original boundary value problem to a first-order initial value problem. This reduction is of great practical
value, since it leads to the powerful systems or the Fourier optic approach [4]. However, the beam optical Hamiltonian in the square-root
approach is no different from the geometric approach of the Fermat’s principle. Moreover, the reduction process itself can never be rigorous
or exact! Hence, there is a room for alternative procedures for the reduction and several reduction schemes are discussed in [5,6]. Of  course
any such reduction scheme is bound to lack in rigour to some extent, and the ultimate justification lies only in the results it leads to. The
issue of the square-root can be elegantly circumvented by exploiting the algebraic similarities between the Helmholtz equation and the
Klein–Gordon equation. Consequently, the Helmholtz equation is linearized using the Feshbach–Villars procedure originally developed for
the Klein–Gordon equation [7]. This casts the Helmholtz equation to a Dirac-like form enabling the use of the Foldy–Wouthuysen expansion
used in the Dirac electron theory [8]. This approach provides an alternative to the square-root approach. This formalism gives rise to
wavelength-dependent contributions modifying the paraxial behaviour [5] and the aberration coefficients [6]. This is the non-traditional
prescription of scalar wave optics. In the low wavelength limit it reproduces the traditional prescriptions based on the square-root and the
Fermat’s principle. The suggestion to employ the Foldy–Wouthuysen transformation technique in the case of the Helmholtz equation was
mentioned in the literature as a remark [9,10]. It was only in the recent works, that this idea was  exploited to analyze the quasiparaxial
approximations for specific beam-optical systems [5,6]. The Foldy–Wouthuysen technique is ideally suited for the Lie algebraic approach
to optics. With all these plus points, the powerful and ambiguity-free expansion, the Foldy–Wouthuysen transformation is still little used
in optics [11,12]. The technique of the Foldy–Wouthuysen transformation results in what we  call as the non-traditional prescriptions of
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Helmholtz optics [6]. The algebraic machinery of this formalism is adopted from the machinery used in the quantum theory of charged-
particle beam optics, based on the Dirac equation [13–21] and the Klein–Gordon equation [10,21]. A treatment of beam optics taking into
account the anomalous magnetic moment is available in [22–28]. A diffractive quantum limit has been also considered for particle beams
[29]. The emerging field of QABP, the quantum aspects of beam physics, has been recognized by a series of meetings by the same name
[30–32].

The Helmholtz equation is derived from the Maxwell’s equations. But it is approximate as one neglects the spatial and temporal
derivatives of the permittivity and permeability of the medium. So, no prescription based on the Helmholtz equation can be exact! One
has to take into account the vectorial nature of the light field and more specifically the fact that the Maxwell’s is a constrained system of
equations. So, it is very natural to look for a prescription fully based on the Maxwell’s equations. The Maxwell’s equations are coupled and
it is difficult to deal with them in their usual form. The logical starting point is to cast the Maxwell’s equations in a matrix form: a single
entity containing all the four Maxwell’s equations. The beam-optical Hamiltonian derived from the matrix representation of the Maxwell’s
equations has an algebraic structure very similar to the Dirac equation. This enables us to use the Foldy–Wouthuysen transformation
technique. The formalism thus developed provides a deeper understanding of beam-optics, particularly in the wavelength-dependent
regime. Moreover, it provides a framework to study beam-optics and light polarization in a unified manner.

From the very beginning, let us be very clear that the Dirac field and the electromagnetic field are two  entirely different entities. But the
resemblance in the underlying algebraic structure of the Dirac equation and the matrix representation of the Maxwell’s equation can be
exploited to carry out some relevant calculations leading to well-established results. The Foldy–Wouthuysen transformation was  histor-
ically developed for the Dirac equation, particularly for understanding its nonrelativistic limit [33–42]. The technique initially developed
for the spin-1/2 particles was extended to the spin-0 and the spin-1 particles [43], and even generalized to the case of arbitrary spins [44].
The Foldy–Wouthuysen iterative diagonalization technique can be applied to certain types of equations, which have a particular algebraic
structure. The problems under study need not be even quantum mechanical! Consequently, the Foldy–Wouthuysen technique has found
to be applicable to a variety of problems, such as atomic systems [45,46]; synchrotron radiation [47] and derivation of the Bloch equation
for polarized beams [48]. In the context of acoustics, comprehensive and mathematically rigorous accounts can be found in [49–54]. It
has found applications in ocean acoustics as well [55]. A comprehensive account of the use of Foldy–Wouthuysen transformation in optics
is available in [11,12]. At no stage, we are invoking any equivalence between the four-dimensional Dirac field and the six-dimensional
electromagnetic field governed by the Maxwell’s equations. We  have used the Foldy–Wouthuysen transformation technique from a cal-
culational purpose. In this paper, we develop the beam-optical formalism starting with the exact matrix representation of the Maxwell’s
equations in an inhomogeneous medium, taking into account the spatial and temporal variations of the permittivity and permeability. The
required matrix representation and how it differs from the other representations is described in Section 2. Section 3 has the beam-optical
formalism. Section 4 has the applications. Section 5 has our concluding remarks.

2. Matrix representation of Maxwell’s equations

There are different matrix representations of Maxwell’s equations which were derived with a different motivation [56–61]. Moreover,
some of these are in vacuum or make use of a pair of matrix equations. In our formalism, we require a single matrix equation containing
all the four Maxwell’s equations, taking into account the spatial and temporal variations of the permittivity �( r, t) and permeability
�( r, t). Such a representation was specifically developed for the beam-optical formalism [62]. The Maxwell’s equations [63,64] in an
inhomogeneous medium with sources are

∇ · D(r, t) = �,

∇ × H(r, t) − ∂
∂t

D(r, t) = J,

∇ × E(r, t) + ∂
∂t

B(r, t) = 0,

∇ · B(r, t) = 0.

(1)

The media is assumed to be linear throughout this study. That is D = � E, and B = � H, where � = �( r, t) and � = �( r, t) are the permittivity and
the permeability of the medium. In general � and � vary with space and time. The speed of light in the medium is v(r, t) = 1/

√
�(r, t)�(r, t)

and the refractive index of the medium is by n(r, t) = c/v(r, t) = c
√
�(r, t)�(r, t). The resistance of the medium is given by h(r, t) =√

�(r, t)/�(r, t). As we shall shortly see, it is advantageous to use the two  derived laboratory functions v(r, t) and h( r, t) instead of �( r, t) and
�( r, t). In terms of these functions, � = 1/hv = n/ch and � = h/v = hn/c.  Following the notation in [59–61], we  use the Riemann–Silberstein
vector [65,66] given by

F±(r, t) = 1√
2

(√
�(r, t)E(r, t) ± i

1√
�(r, t)

B(r, t)

)
. (2)

We  further define,

�±(r, t) =

⎡⎢⎢⎢⎢⎣
−F±

x ± iF±
y

F±
z

F±
z

F±
x ± iF±

y

⎤⎥⎥⎥⎥⎦ , (3)
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