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a  b  s  t  r  a  c  t

In the  present  paper,  self-focusing  phenomenon  occurring  as a  result  of non-linear  interaction  of  intense
laser  beam  with  thermal  conduction-loss  predominant  plasmas  is studied  by following  both  approaches
viz.  paraxial  theory  approach  and  moment  theory  approach.  Non-linear  differential  equations  for  the
beam width  parameters  of  laser beam  have  been  set  up  and  solved  numerically  in both  cases  to  study  the
variation  of  beam  width  parameters  with  normalized  distance  of  propagation.  Effects  of  laser  intensity
as  well  as plasma  density  on  the  beam  width  parameters  have  also  been  analyzed.  It is observed  from
the  analysis  that in  case  of  moment  theory  approach,  strong  self-focusing  of  laser  beam  is  observed  as
compared  to  paraxial  theory  approach.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

An efficient coupling of a high power laser beam with plasma
is a topic of current research interest in many areas such as
laser induced fusion and particle acceleration. In the laser plasma
interaction process, various non-linear phenomena such as self-
focusing, filamentation, stimulated Raman scattering, stimulated
Brillouin scattering, two plasmon decay, etc. [1–3] play a crucial
role. However, self-focusing continues to be a subject of great fasci-
nation due to its relevance to ionospheric radio propagation, optical
harmonic generation, X-ray lasers and other important applications
[4–9]. The self-focusing of laser beams, having nonuniform distri-
bution of irradiance in a plane, normal to direction of propagation
leads to nonuniform distribution of carriers along the wave-front,
which further leads to a change in dielectric constant of plasma.
The collisional nonlinearity occurs because of electrons acquiring
temperature higher than other species on account of net effect of
ohmic heating and energy lost by electrons due to collisions with
heavy particles (atoms/molecules and ions) and by thermal con-
duction [10–15]. These analysis consider only one type of energy
loss viz. collisions or thermal conduction. Most of the analysis of
self-focusing are based on paraxial theory approach [10,11], which
take in to account only paraxial region of the beam and thus lead
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to large error in the critical power. Importance of non-paraxiality
in self-focusing mechanism has already been pointed out [16]. In
some experiments, where solid state lasers are used, wide angle
beams are generated for which the paraxial approximation is not
applicable. Also, if the beam width of laser beam used is compara-
ble to the wavelength of the laser beam, paraxial approximation is
not valid. In this theory non-linear part of the dielectric constant is
Taylor expanded up to second order term and higher order terms
are neglected. However, the moment theory [17,18] is based on
the calculation of moments and does not suffer from this defect. In
moment theory approach, non-linear part of the dielectric constant
is taken as a whole in calculations [19–26].

In the present paper, the self-focusing phenomenon occurring
as a result of non-linear interaction of laser beam with thermal
conduction-loss predominant plasmas is studied by following both
approaches viz. the paraxial ray approach and the moment the-
ory approach. Non-linear differential equations for the beam width
parameters of laser beam are set up and solved numerically in both
cases to study the variation of beam width parameters with nor-
malized distance of propagation. Effects of laser intensity as well as
plasma density on the behavior of beam width parameters are also
analyzed.

2. Solution of wave equation

Consider the propagation of a laser beam of angular frequency
ω0 in a homogeneous collisional plasma along z-axis. The initial
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intensity distribution of beam along the wavefront at z = 0 is given
by

E0.E�
0|z=0 = E2

00 exp
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−r2

r2
0

]
(1)

where r2 = x2 + y2 and r0 is initial width of the main beam and r is
radial co-ordinate of the cylindrical co-ordinate system.

The slowly varying electric field E0 of the laser beam satisfies
the following wave equation.

∇2E0 − ∇(∇.E0) + ω2
0

c2
�E0 = 0 (2)

In the WKB  approximation, the second term ∇(∇ . E0) of Eq. (2) can
be neglected, which is justified when (c2/ω2
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4�n0e2/m is the plasma frequency and other symbols
have their usual meanings. �1 represents the non-linear part of the
dielectric constant and is given by [15],
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Electric field E0 can be written as

E0 = A(r, z) exp[�{ω0t − k0z}] (6)

where A(r, z) is a complex function of its argument. The behavior of
the complex amplitude A(r, z) is governed by the parabolic equa-
tion obtained from the wave Eq. (3) in the WKB  approximation by
assuming variations in the z direction being slower than those in
the radial direction,
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0�1A

c2
= 0. (7)

This equation is also known as the quasi optic equation.

3. Paraxial theory approach

Further assuming the variation of A(r, z) as

A(r, z) = A0(r, z) exp[−�k0S0(r, z)] (8)

where A0(r, z) and S0 are real functions of r and z (S0 being the
ekional). On substituting A in Eq. (7) and separating the real and
imaginary parts of the resulting equation, the following set of equa-
tions is obtained:
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and
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Following [10,11,15], the solutions for Eqs. (9) and (10) can be writ-
ten as
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S0 = r2

2
ˇ0(z) + 	0(z) (12)

where ˇ0(z) = (1/f0)(df0/dz)  and k0 = (ω0�1/2
0 )/c.  The parameter ˇ−1

0
may  be interpreted as the radius of the curvature of the main beam
and 	0(z) is the phase shift, which we  do not require for the fur-
ther analysis as we  are interested in the intensity of the laser beam
rather than its phase. On substituting Eqs. (11) and (12) in Eq. (9)
and on equating the coefficients of r2 on both sides, we get the fol-
lowing differential equation for the beam width parameter f0 of the
laser beam

d2f0
d
2

= 1

f 3
0

− ω2
pr4

0

c2

˛E2
00

f0
(13)

where 
 = (z/k0r2
0 ) is the dimensionless propagation distance and

 ̨ = ˇ/(16�T7/2
0 ). Eq. (13) describes the variation in the beam width

parameter f0 of a Gaussian laser beam on account of the competition
between diffraction divergence and nonlinear focusing terms as
the beam propagates in the thermal conduction-loss predominant
plasma.

4. Moment theory approach

Eq. (7) can be written as

�
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where �(AA�) = (k0/2�0)(� − �0) and � = �0 + �1, where �o = 1 −
(ω2

p/ω2
0) and �1 are the linear and nonlinear parts of the dielectric

constant, respectively. Also, k0 = (ω0/c)
√

�0 and ωp are propaga-
tion constant and plasma frequency, respectively. Now from the
definition of the second order moment, the mean square radius of
the beam is given by
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From here one can obtain the following equation.
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where I0 and I2 are the invariants of Eq. (14) [17]
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With [18]
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For z > 0, we  assume an energy conserving Gaussian ansatz for the
laser intensity [10,11,15]
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From Eqs. (15), (17) and (21), it can be shown that
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00, (22)
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