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a  b  s  t  r  a  c  t

The  Rayleigh–Benard  Convection  (RBC)  were  studied  theoretically  in  the  homeotropic  nematic  liquid
crystal  (NLC)  cell  due  to  the  absorption  of  a normally  incident  Gaussian  light  beam  from  upper  side  of
the  cell.  It  was  shown  that  a convection  of  hydrodynamic  motion  in  the  NLC  can  be  induced  and  even-
tually  the  molecular  director  coupling  with  hydrodynamics  reorients  the director.  An  external  magnetic
field parallel  to  the  director  decreases  the  director  reorientation  and  the  radial  flow  velocity,  while  the
velocity  in  the z  direction  is unaffected.  The  results  were  found  to  be in a  range  that  can  easily  be  checked
experimentally.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Liquid crystals (LC) are interesting materials that have physical
properties between conventional fluids and solids [1]. One of the
most important features of the LCs which results novel properties
in the LCs is the ability of the molecular director reorientation due
to different mechanisms such as the optical [2], thermomechani-
cal [3], mechanical [4], photorefractive [5], mechanisms. In all of
the mentioned cases the problem is to find a suitable mechanism
transforming the absorbed energy in the LC to the molecular defor-
mation energy. The hydrodynamical motions can also be induced
in the LCs [6]. There are three main mechanisms of thermal induced
hydrodynamic motion: gravity or the Rayleigh–Benard Convec-
tion (RBC) [7], thermocapillary or the Marangoni effect [8] and
the direct volume expansion mechanism [9]. Convective motion
in the isotropic horizontal layer fluid heated from below, under
the action of the gravity force is known as gravity or RBC. In the
classical Rayleigh–Benard problem a sample of Newtonian fluid is
subjected to an adverse thermal gradient. When the temperature
difference between the upper and lower boundaries is less than
a critical value, the system remains in the equilibrium and there
is no flow. However, as this critical value is exceeded the onset of
stationary convection is observed. This simple hydrodynamic insta-
bility occurs when the buoyancy force due to the thermal expansion
near the lower surface is sufficient to overcome the opposing vis-
cous shear force. This hydrodynamic motion is due to the variation
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of the fluid density and is called convective motion. This convec-
tive motion leads to the relocation of the upper cool layers with
the lower hot layers and also to the circular rolls of the layers in the
NLC cell [10].

Because of the anisotropy of the liquid crystal, the orienta-
tion deformation reflects back not only on the flow (viscosity
anisotropy) but also on the heat transfer [11]. The coupling between
the flow, temperature and director orientation allows the pos-
sibility of interesting phenomena in the NLC not seen in the
conventional isotropic liquids. As a result the induced hydro-
dynamic motion leads to the director reorientation in the NLC
[7,9,11]. For example the RBC heated from above does not occur
in the homogeneous ordinary liquids, but can take place in the LCs
[6].

In this report the RBC in a homeotropic NLC due to a laser
Gaussian beam absorption incident normally from above is stud-
ied theoretically. When a horizontal layer of a homeotropic NLC is
subjected to a thermal gradient heating from above, the thermal dif-
fusivity anisotropy produces a heat focusing effect in the medium.
The RB instability reduces drastically the critical temperature gra-
dient [12,13]. The NLCs are sensitive to an external magnetic or
electric field [14]. Depending on the magnetic field direction with
respect to the director, the reorientation threshold filed will be
different [12]. In fact, due to the positive anisotropy in the mag-
netic susceptibility this kind of fluid has the property of aligning
the director in the same direction as H when the intensity of H
reaches a critical value (Freedericksz transition).

This report is organized as follows. In Section 2 the veloc-
ity components in the direction r and z directions are calculated.
The anisotropy of heat transfer in the induced temperature
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profile is taken into account (Section 3). The torque balance
equation indicates the director reorientation (Section 4). Section 5
includes the numerical calculations of the coupled equations, and
finally Section 6 concludes the results.

2. Navier–Stokes equation

The Navier–Stokes equation explains that a fluid how flows
under the influence of different agents. Because of the mentioned
coupling the equations of the Navier–Stokes, torque balance and
temperature diffusivity should be simultaneously solved in the
NLCs [15]. The following assumptions are used in deriving the men-
tioned equations; the Boussinesq approximation that ignores the
thermal variations of the physical parameters else than the ther-
mal  dependence of the density in the buoyancy force [14]; the hard
anchoring condition in the both cell walls, and the incompressibility
condition ∇.v = 0 where v is the flow velocity.

A horizontal layer 0 ≥ Z ≥ L of homeotropically oriented NLC
(unperturbed director, n0 = ez) in cylindrical coordinate system is
considered. The layer is in the gravitational field with g = −gez and
absorbs a Gaussian incident light from above. Due to the symme-
try of the heat diffusivity and director orientation around the z axis
∂/∂ϕ and vϕ are zero [16]. The excited hydrodynamic motions are
described by the Navier–Stokes equation as follows:
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where dij is the velocity – gradient tensor and N is the rate of change
of the director with respect to the immobile background fluid and
w is the angular velocity. These variables are written in the fol-
lowing form; P = P0 + P′, � = �0(1 − ˇT), where, P0, and �0 are the
unperturbed pressure (P0 = −�0gz)  and density; P′ and v′, are the
pressure and velocity perturbations, and  ̌ is the volume expansion
coefficient of the LC. The r and z components of the Navier–Stokes
equation after linearization are respectively:
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3. Thermal conductivity equation

Because of the thermal anisotropy of the NLC the heat flux qi is
related by a second – order symmetric tensor to the temperature
gradient qi = −kij

∂Ti
∂xj

[10]. The thermal conductivity is written in

the following form:
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where Q is the light induced heat source with the form of
P
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exp[−˛⊥z], p is the light power, a is the light spot

size, ˛⊥ is the perpendicular cell absorption coefficient, and q is the
heat flux vector.
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3

(11)

ka = k‖ − k⊥ (12)

where kij is the thermal conductive tensor, kiso and ka are the iso-
topic and anisotopic thermal conductive and k‖, k⊥ are the parallel
and perpendicular thermal conductivities, respectively. The tem-
perature equation after linearization is as follows:
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where �0 is the density, p is the pressure, v is the velocity, T is the
temperature and cp is the specific heat capacity.

4. Torque balance equation

The torque balance equation shows the director reorientation
due to the all forces as hydrodynamic, Frank elasticity and external
forces:
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where f is the hydrodynamical force, F is the Frank free energy and
k1. . .k3 are the Frank elastic constants. The torque balance equation
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