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a  b  s  t  r  a  c  t

In  this  paper,  we  propose  a novel  classification  framework  using  single  feature  kernel  matrix.  Dif-
ferent  from  the  traditional  kernel  matrices  which  make  use  of  the  whole  features  of  samples  to
build the  kernel  matrix,  this  research  uses  features  of  the  same  dimension  of  any  two  samples  to
build  a sub-kernel  matrix  and  sums  up  all  the  sub-kernel  matrices  to  get  the  single  feature  ker-
nel  matrix.  We  also  use  single  feature  kernel  matrix  to  build  a  new  SVM  classifier,  and  adapt  SMO
(Sequential  Minimal  Optimization)  algorithm  to  solve  the  problem  of  SVM  classifier.  The  results  of
the  experiments  on several  artificial  datasets  and  some  challenging  public  cancer  datasets  display
the  classification  performance  of  the  algorithm.  The  comparisons  between  our  algorithm  and  L2-norm
SVM  on  the  cancer  datasets  demonstrate  that  the  accuracy  of  our  algorithm  is higher,  and  the  num-
ber  of  support  vectors  selected  is  fewer,  indicating  that  our proposed  framework  is  a  more  practical
approach.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

The study of machine learning methods based on the input and
the output data is one of the most important topics in modern
intelligence technology. These methods are designed to find the
rules from the observation data and employ the rules to predict
the label of the future sample. There are two kinds of datasets: one
is large samples and the other is small samples. Statistic theories
have proved to be applicable for the cases with large samples, yet do
not perform well for some particular cases with small samples. To
compensate the deficiency, Vapnik proposed statistic learning the-
ory [1]. Based on this new theory, SVM has been developed, and it is
considered to be a very popular and successful example in machine
learning.

The good performance of SVM in many applications benefits
from the usage of many key technologies such as the largest mar-
gin hyperplane, convex quadratic programming, nonlinear kernel
mapping, slack variables, and sparse solutions. Constructing a ker-
nel function which can help improve prediction performance is a
major concern in the academic world.

For datasets with complex structure, the accuracy of linear
classifier is poor, thus nonlinear mapping function to implic-
itly map  the input data points from the input space to a
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possibly high dimensional nonlinear space has been introduced.
In the high dimensional space, linear classifier can achieve good
performance. Kernel methods have some excellent characteris-
tics:

(1) Kernel functions can avoid the problem of dimension disaster.
The dimension of the kernel matrix is the same as the num-
ber of samples, thus can decrease the computation complexity.
Therefore, kernel functions can cope with datasets with high
dimension effectively.

(2) There is no need to know the explicit expression of nonlinear
function.

(3) The type and parameters of kernel functions can implicitly
affect the relationship between the input space and high dimen-
sional space, then determine the properties in high dimensional
space, and change the ability of kernel machines.

In the field of kernel machine researches, the most focused area
is the determination of the best kernel function, and the values
of its parameters. And many researches used all the features of
samples to build the kernel matrix. In this article, we  propose a
new kind of method to build the kernel matrix, which uses only
one single feature to build the sub kernel matrix, and then uses
the sub kernel matrices to build the kernel matrix. Our new ker-
nel matrix inherits the above characteristics but differs from the
traditional methods. In the traditional methods, the components
of the kernel matrix are calculated by two  samples through kernel
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function. It distinguishes samples but does not consider the fea-
tures. In our new method, we use only one feature to build the sub
kernel matrix every time, and use all the sub kernel matrices to
build the kernel matrix. We  not only distinguish different samples
but also features. Experimental results on artificial and real world
datasets show that this new method provides a good prediction of
generalization.

2. L2-norm SVM

Suppose that the training dataset consists of a set of m samples
{xi, yi}m

i=1 where xi ∈ Rn, yi ∈ {−1, 1}. The original problem of SVM
can be expressed as the following

min
w,b,�

1
2

wT w + c

m∑
i=1

�i

s.t.yi(wT xi + b)≥1 − �i, �i≥0, i = 1, 2, . . .,  m

(1)

Based on the standard L2-norm SVM, researchers proposed
some other formats, such as the Least Square SVM. From prob-
lem (1), we can get a linear classifier. However, for some datasets
with complex inner structures, researchers introduced nonlinear
function into problem (1) and we got

min
w,b,�

1
2

wT w + c

m∑
i=1

�i

s.t.yi(wT �(xi) + b)≥1 − �i, �i≥0, i = 1, 2, · · ·,  m

(2)

where �() is the nonlinear function, and c is a non-negative regular-
ization parameter fixed by the user which determines the tradeoff
between the maximum margin and the minimum empirical
risk.

Problem (2) is called the primal optimization problem. Introduc-
ing the Lagrange multipliers we get the dual optimization problem

min
˛

1
2

m∑
i=1

m∑
j=1

˛i˛jyiyj�(xi)
T �(xj) −

m∑
i=1

˛i

s.t.

m∑
i=1

˛iyi = 0, 0 ≤ ˛i ≤ c, i = 1, . . .,  m

(3)

The traditional kernel matrix is defined as

K(xi, xj) = �(xi)
T �(xj) (4)

which makes use of the inner production of two  samples in high
dimensional space.

Problem (3) is a quadratic programming problem, and we can
use the kernel matrix to build the quadratic gram matrix

Qij = yiyjK(xi, xj) (5)

Then, problem (3) can be reformulated

min
˛

1
2

˛T Q  ̨ − eT ˛

s.t.y˛T = 0, 0 ≤ ˛i ≤ c, i = 1, 2, ..., m

(6)

where e = [1,  1, · · ·, 1]T .
The discrimination function based on this kind of kernel matrix

is

sgn(wT �(x) + b) = sgn

(
m∑

i=1

yi˛iK(xi, x) + b

)
. (7)

Fig. 1. Schematic diagrams of two different methods to build the kernel matrix. (a)
Traditional kernel matrix and (b) sub kernel matrix.

3. SVM based on single feature kernel matrix

3.1. Traditional kernel matrix

Our new kernel matrix is inspired by RBF kernel matrix. The
components of RBF kernel matrix can be calculated as follows.

K(xi, xj) = exp

(
− ||xi − xj ||2

2�2

)

= exp

(
−
∑n

k=1
(xik − xjk)2

2�2

)

= exp

(
− (xi1 − xj1)2

2�2

)
exp

(
− (xi2 − xj2)2

2�2

)
· · · exp

(
− (xin − xjn)2

2�2

)
= K(xi1, xj1)K(xi2, xj2)· · ·K(xin, xjn)

=
n∏

k=1

K(xik, xjk)

The RBF kernel matrix is expressed as the product K(xik, xjk) Our
new method takes the element of kernel matrix as the average of
K(xik, xjk). We will derive the formulations below.

3.2. Single feature kernel matrix method

Firstly, we  define single feature kernel matrix including sub ker-
nel matrix and kernel matrix.

Sub kernel matrix can be got through (8), which used only one
feature each time, and the average of all the sub kernel matrices
gives rise to the kernel matrix as (9):

Knew
k (xik, xjk)

def= �(xik)�(xjk), k = 1, 2, . . .,  n (8)

Knewdef= 1
n

n∑
k=1

Knew
k (9)

We  compare our new kernel matrix with traditional kernel
matrix in Fig. 1.
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