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a  b  s  t  r  a  c  t

Based  on  interferogram  zero  padding  and  fast  Fourier  transform  (FFT)  methods,  an  effective,  straight-
forward  and  stable  carrier-removal  approach  in Fourier  transform  (FT)  based  method  for  carrier
interferogram  analysis  is  proposed.  The  spatial  carrier  interferogram  is  firstly  extrapolated  by zero
padding  method,  and  the  carrier-frequency  values  within  a  small  fraction  of an  integral  (or a pixel)  are
estimated  from  the  extrapolation  interferogram  with  FFT  method.  Then  the carrier-phase  component  is
removed  by  subtracting  a  pure  carrier-frequency  phase  constructed  by  the  estimated  carrier-frequencies
in  the  spatial  domain.  Numerical  simulations  and  experiments  are  given  to demonstrate  the  perfor-
mance  of the  proposed  method  and  the  results  show  that  the  proposed  method  is  effective  and  stable  for
suppressing  the  carrier-removal  error  in  the  FT  method  for  carrier  interferogram  analysis.

Crown Copyright ©  2013 Published by Elsevier GmbH. All rights reserved.

1. Introduction

The Fourier transform based (FT) method is one of the most pop-
ular interference interferogram analysis methods for high accuracy
and automatic phase measurement systems. The FT method was
originally proposed and demonstrated by Takeda et al. [1], and then
many works were published afterward [2–8]. Comparing to tempo-
ral phase-shifting (PS) method, the FT method usually requires only
one interferogram, which makes it is less sensitive to circumstantial
disturbances and vibrations [9]. Therefore, it has been widespread
applied to various kinds of interferometric applications, such as
optical interferometer measurements [10–12], and holography
interferometry and its applications in phase microscopy [13–16].

The major idea of the FT method can be described as follows
[1–4,8]. The deformed fringe pattern g(x,y) with linear-carrier is
generally expressed as

g(x, y) = a(x, y) + b(x, y) cos
[
2�(f0xx + f0yy) + �(x, y)

]
(1)

where a(x,y), b(x,y) are the background illumination and the modu-
lation intensities, respectively; f0x and f0y are the introduced spatial
carrier-frequencies along x and y directions, respectively; �(x,y) is
the modulating phase. The carrier interferogram, cos(2�f0xx + f0yy),
serves as an carrier information for recording the measured phase
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data but it will simultaneously introduce a carrier phase compo-
nent, 2�(f0xx + f0yy), in the phase extraction procedure [7]. Hence
the carrier phase component must be subtracted or removed from
the overall phase distribution for evaluation of the phase of the
measured phase component �(x,y). And it is generally achieved
using the traditional FT method, as follows.

By using the Euler formula to expand the cosine term in Eq. (1),
we have

g(x, y) = a(x, y) + c(x, y) exp
[
j2�(f0xx + f0yy)

]
+ c∗(x, y) exp

[
−j2�(f0xx + f0yy)

]
(2)

with the definition

c(x, y) = 1
2

b(x, y) exp [j�(x, y)] (3)

and superscript * denotes the complex conjugate. Taking the
Fourier transform in two-dimension for the carrier interferogram
expressed in Eq. (2), we  have

G(fx, fy) = A(fx, fy) + C(fx − f0x, fy − f0y) + C∗(fx + f0x, fy + f0y) (4)

where fx and fy are the spatial frequency coordinates in the fre-
quency domain. G(fx,fy), A(fx,fy), C(fx,fy) and C*(fx,fy) are the Fourier
transform of g(x,y), a(x,y), c(x,y) and c*(x,y), respectively. Assuming
that the terms, a(x,y), b(x,y), and �(x,y), are slow varying functions
compared with the spatial carrier-frequency f0x and f0y. The terms
A(fx,fy), C(fx − f0x,fy − f0y) and C*(fx + f0x,fy + f0y) in the right hand of
Eq. (4) are separate and do not overlap in the frequency domain.
Hence the spectrum component C(fx − f0x,fy − f0y) can be isolated
with a suitable spectral filter. Then the component C(fx − f0x,fy − f0y)
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is shifted to the origin position with a distance of f0x and f0y along x
and y direction, respectively, in the frequency domain, and we  have
C(fx,fy). Taking the inverse Fourier transform of C(fx,fy), c(x,y) will
be obtained then the measured phase component �(x,y) is given by

�(x, y) = tan−1 Re [c(x, y)]
Im [c(x, y)]

(5)

where tan−1[·] denotes the arctangent operator, Im[·] and Re[·]
denote the imaginary and real parts of c(x,y), respectively.

However, the fringe patterns are usually recorded by 2D solid-
state image sensors, such as CCD camera, in practical applications.
As discussed in Ref. [4], the digitization of the interferogram data
can seriously distort the retrieved phase �(x,y), because the transla-
tion is constrained to integer values of the spatial frequency which
results in the digitization of sampling frequencies in the frequency
domain. The carrier-frequency f0x and f0y usually are not an inte-
ger but instead of a small fraction of the frequency interval. In this
case, a considerable departure will appear between the discrete
carrier-frequency, which is determined by the peak coordinate of
the side-lobe, and the real carrier-frequency f0x and f0y. There-
fore, a carrier-removal error will be introduced in the traditional
spectrum-shifting method as described in Reference [1] and it will
result in a seriously tilt error in the retrieved phase �(x,y) deter-
mined in Eq. (5).

In the past two decades, several solutions [17–23] are devel-
oped to suppress the carrier-removal error problem. Bone et al. [5]
constructs a carrier phase plane from an information-free region in
the interferogram by the least-squares fit method, and the mea-
sured phase is obtained by subtracting the carrier phase in the
spatial domain. However, the accuracy of the retrieved phase is
determined by the information-free region in the interferogram
and the requirement of an information-free region in the inter-
ferogram cannot always be fulfilled [17]. Similarly, Gu and Chen
[19] presents a bilinear surface to describe the carrier component.
Another carrier-removal approach described in Ref. [20] directly
removes the carrier phase in the spatial domain by subtracting
a reference carrier phase calculated from an additional reference
interferogram. For the same case, Nicola and Ferraro [21] remove
the carrier phase in the frequency domain with FT method, and it
also requires an additional pure carrier-frequency interferogram.
However, recording two individually interferograms, a deforma-
tion interferogram and a reference interferogram, are required
and negating the advantage of single-shot measurement in the FT
method. Moreover, Ge [22] adjusts the carrier frequency values
equal to an integral multiple of the sampling frequency by adjusting
the inclination angle of the reference mirror with a piezoelectric
actuator. However, it makes the setup complicated and consumes
more time. Recently, Fan et al. [23] report a spectrum centroid
method for suppressing carrier-removal error in the FT method for
carrier interferogram analysis, for simplicity, it is shorted as “SC”
method. The carrier-frequency values of interferogram are esti-
mated from the spectrum centroid of component C(fx − f0x,fy − f0y),
and the carrier phase is removed by shifting the C(fx − f0x,fy − f0y)
to the origin position in the frequency domain by multiplying the
original interferogram with a constructed pure carrier phase wave
in the spatial domain. However, its accuracy is limited by the spec-
trum distribution and is unstable when chooses different window
sizes of spectral filter.

In this paper, we present an effective, straightforward and sta-
ble carrier-removal technique for carrier interferogram analysis
based on zero padding method. The carrier-frequency values within
a small fraction of an integral (or pixel) are estimated from the
extrapolation fringe with FFT approach. Then the carrier phase is
removed by subtracting a pure carrier-frequency phase constructed
by the estimated carrier-frequency f0x and f0y in the spatial domain.

For brevity and distinction, we  refer to the proposed method as “ZP”
method. The principle of the proposed method is described in Sec-
tion 2. Numerical simulations and experiments are carried out to
demonstrate performance of the proposed ZP method in Sections
3 and 4, respectively. We  conclude all the paper in Section 5.

2. Theory analysis

2.1. Discrete Fourier transform for fringe pattern analysis

The intensity of the fringe pattern is usually recorded by a solid-
state image sensor such as CCD camera in practical applications
thus the fringe pattern described in Eq. (1) usually can be further
expressed as discrete form

g(m, n) = a(m, n) + b(m, n) cos
[

2�
(

u0

M
m + v0

N
n
)

+ �(m, n)
]

(6)

where m,  n are integer; M,  N are the sampling points on the x, y
directions, respectively; the sampling intervals Tx and Ty both equal
to 1; u0 and v0 are integer and the values of them are closed to the
true carrier-frequency f0x and f0y, respectively. The discrete Fourier
transform (DFT) of Eq. (6) is given by [24]

G
(

u

M
,

v
N

)
=

M−1∑
m=0

N−1∑
n=0

g(m, n) exp
[
−j2�

(
u

M
m + v

N
n
)]

(7)

where G(u/M, v/N) is the spectral distribution of Eq. (6); u and v are
integer of the sampling frequency interval; and j = (−1)1/2. Similar
to the analysis procedure in Section 1, the spectrum component
C(u/M − u0/M,  v/N − v0/N) in Eq. (7) is extracted with a band filter in
frequency domain and its inverse discrete Fourier transform (IDFT)
is given by

c(m, n) = 1
MN

M−1∑
u=0

N−1∑
v=0

C
(

u − u0

M
,

v − v0

N

)
e
[

j2�
(

u

M
m + v

N
n
)]

= 1
2

b(m, n) exp
[

j2�
(

u0

M
m + v0

N
n
)

+ �(m, n)
]

(8)

According to Eq. (8), the measured phase can be determined by

�(m, n) = tan−1
{

Im [c(m, n)]
Re [c(m, n)]

}
− 2�

(
u0

M
m  + v0

N
n
)

(9)

According to analysis in Section 1, the carrier-frequency f0x, f0y of
carrier interferogram expressed in formula (2) usually are not equal
to an integer multiple of the Niquest basic frequency 1/M,  1/N, thus
they can be expressed as follow⎧⎪⎨
⎪⎩

f0x = u0 + ıx

M
, − 0.5 < ıx < 0.5

f0y = v0 + ıy

N
,  − 0.5 < ıy < 0.5

(10)

The deviation between actual carrier-frequency f0x, f0y and the
discrete ones u0, v0, which caused by the discreteness of the samp-
ling points in the spatial domain of fringe pattern, can be expressed
as⎧⎪⎨
⎪⎩

ıfx = f0x − u0

M
= ıx

M

ıfy = f0x − v0

N
= ıy

N

(11)
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