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An  algorithm  of  principal  component  analysis  in video  compressed  sensing  is proposed  in the  paper.
Aiming  at  the  compressed  sensing  problems  of  video  sequences,  the  inter-frame  correlation  among  the
images  is  analyzed  and the  transform  coefficients  with  lower  value  are  removed  according  to  the  energy
concentration  characteristics  of principal  component  analysis.  Therefore,  the  sparse  realization  of video
signals  in  the  form  of  principal  component  analysis  is accomplished  and  the  possibility  of  the  transforma-
tion  being  used  in  compressed  sensing  algorithm  is  verified.  Finally,  simulation  results  show  that,  with
the  comparison  of  the  traditional  algorithm  based  on wavelet  transform,  the proposed  algorithm  can  not
only improve  the reconstructed  quality  and  the  visual  effects  of the  video  sequence,  but  also  save  the
sampling  resources.  Moreover,  it is  more  suitable  for  stream  transmission  of  multimedia.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

With the advent of information age, people has increasing
demand on the amount of information, especially image, video and
other multimedia information, which results in a high cost of samp-
ling. On the other hand, after the sampling process, the signal will be
compressed in order to reduce the cost of transmission and storage,
and the process will cause the waste of sampling resources again.
Thus, the codec technology of video signals in the field of sampling
is an important issue to be solved in the encoding and transmission
study of streaming media.

Recently, scholars in relevant area come up a new theory of com-
pressed sensing (also referred to as CS for short) [1,2]. In traditional
sampling theory – Shannon Theorem, the sampling frequency must
be higher than twice the highest frequency in order not to make the
signal distortion. Yet compressed sensing theory shows, when the
signal is compressible or sparse, its compressed representation can
be accessed to directly, which can omit the sampling of abundant
useless information. For CS, assuming that signal can be exactly
recovered from incomplete information through a random mea-
surement process, the representation of signal in a form of small
set of data can be acquired. Each measured value of original signal
passed through measurement matrix is considered important or
unimportant equivalently and loss of a few can still perfectly recon-
structs the original signal, therefore, the method can effectively
[3].

CS sampling is a statistical technique of data acquisition and
estimation, mainly used in the sampling and compression field
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of sparse data. Because of the compressibility of video images in
some transform domain and their fairly superior sparsity of resid-
ual, CS theory has important applications in video encoding [4].
At present, most of the papers for CS sampling studied in image
compression field, while seldom pay much attention to operat-
ing against autologous characteristic of video sequence. Paper [5,6]
proposed a video codec scheme based on compressed sensing, but
they both used traditional wavelet basis to get the images sparse
in the processing of the key frames. In this paper, principal compo-
nent analysis algorithm for video compressed sensing is presented
based on the inter-frame correlation among the video images. The
algorithm can remove inter redundancy to a large extent to get
better compression ratio and reconstruction quality.

2. Compressed sensing model

Compressed sensing theory was first proposed by Candès et al. in
2004. The main idea of the theory is that the signal can be observed
in a lower frequency as long as it is sparse after some orthogonal
transform. In this case, we  can get the compression form of the
original signal with the minimum number of measurements. Then
the measurements help to reconstruct the original signal. At this
point, the number of measurements is only determined by the char-
acteristics of the signal, and not restricted by Nyquist frequency.
Consequently, compressed sensing is suitable for sampling of the
signal with high bandwidth.

Consider a discrete signal x(n) (n = 0,1, . . .,  N − 1)of length N as an
N × 1 dimensional column vector in R

N space, denoted by X, which
can be represented by a linear combination of a set of orthogonal

basis
{
 i

}N
i=1

. Then � =
[
 1,  2· · ·,  N

]
is an N × N basis matrix

consisted of column vector  i. If X is sparse on this set of the basis,
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the transform coefficients � =
[
�1, �2, · · ·�N

]T
are equivalently or

similarly K-sparse expressions under the basis � through � = �TX .
At this point of view, there are K nonzero coefficients and K � N. We
can write the signal X as a linear combination of basis � :

X = �� =
N∑
i=1

�i i (1)

M measurements of Y = [y1, y2, . . .,  yM]T can be observed. Since
M < N, this is a dimension reduction process, expressed by linear
projection as:

Y = ˚X = ˚�� (2)

 ̊ is an M × N measurement matrix. The equation is underde-
termined because the dimension M of the measurement Y is lower
than that of the original signal with N. That is, we cannot get exact
X when Y is known. However, � is K-sparse makes it possible to
solve the problem with optimal �0 norm, so as to make sure we
have the minimum number of nonzeros in � [7], which considers
the problem

min
�

∥∥�∥∥
0

s.t. Y = ˚�� (3)

On purpose to reconstruct the signal accurately, Candès and Tao
proposed and proved that the measurement matrix must satisfy the
Restricted Isometry Property (RIP) [8]. That means, for any K-sparse
signal x, we have

(1 − ıK )‖x‖2
2 ≤

∥∥˚Tx
∥∥2

2
≤ (1 + ıK )‖x‖2

2 (4)

where 0 < ıK < 1,
∣∣T∣∣ ≤ K, T ⊂

{
1, 2, . . .N

}
. where 0 < ıK <

1|T | ≤ K, T ⊂ {1, 2, . . .,  N}. �T is an M × |T| submatrix consisting of
the related columns of � indexed by T.

Paper [9] points out that the equivalent condition for Restricted
Isometry Property (RIP) is the observation operator and the basis
matrix are irrelated. Since Gaussian random matrix is not related to
most orthogonal basis matrices, it is chosen to be the measurement
operator. Then irrelation condition can be satisfied well [10]. Oth-
erwise, Rademacher matrix whose elements are all plus or minus
1 and local Fourier matrix can also meet the condition.

The reconstruction of the signal is to find the solution to the
optimization problem of �0 norm which is an NP-hard problem.
In such circumstances, we  usually change to the consideration of
optimization problem of �1 norm [11]. Then we have

min
�

∥∥�∥∥
1

s.t. Y = ˚�� (5)

At present, the main reconstruction algorithm includes basis
pursuit (BP), matching pursuit (MP), orthogonal matching pursuit
(OMP) and so on.

3. Principal component analysis of video sequences

Compression degree of the data depends on how the redun-
dancy can be removed. And the redundancy is measured by means
of correlation. Inter-frame image of the video sequence has a large
temporal redundancy, also has a large correlation. Principal com-
ponent analysis is built on the basis of statistical properties, also
known as eigenvectors transform, K-L transform and Hotelling
transform. It has outstanding advantage of good decorrelation. The
transform determines its transformation matrix according to the
statistical characteristics of the image (covariance matrix of the
image). Therefore the signal correlation in transform domain can
be removed entirely to make the image has the best matching
effect. Stated thus, principal component analysis transform, known
as the best transform based on minimum mean square error (MSE),

occupies an important position in digital image compression tech-
nology.

For a single image in the video sequence, there is correlation
between adjacent pixels because of intra-frame redundancy. Then
principal component analysis can be adopted to get the transfor-
mation and compression of the whole image. In the meantime,
adjacent frames in the video sequence also have correlation by rea-
son of inter redundancy between natural images of the sequence.
With the principle above, we  can utilize principal component anal-
ysis in the transformation process of the entire video sequence.

Consider an I-frame video sequence composed of images of size
W × L and the sequence can be represented as

squ = fi(x, y) (6)

1 ≤ x ≤ L, 1 ≤ y ≤ W,  1 ≤ i ≤ I.
Divide the images into blocks of size n × n, and assume W, L are

both integral multiples of n. So each image is divided into LW/n2

blocks. The vector Xti can be generated by row stacking or column
stacking of block image f t

i
(x, y), which is the image of the tth block

in the ith frame. Here we have
Xti = (f t

i
(1,  1),  f t

i
(1,  2)·  · ·f t

i
(1,  n), f t

i
(2,  1),  · · ·f t

i
(2,  n)· · ·f t

i
(n, 1)· · ·f t

i
(n, n))T (7)

where 1 ≤ t ≤ LW/n2, 1 ≤ i ≤ I.
If the mean vector is defined as

mf = E
{

X
}

(8)

and the covariance matrix of X is

Cf = E{(X − mf)(X − mf)
T } (9)

For the tth block image in the image sequence of I frames, its
mean vector and covariance matrix can be written

mt
f = E

{
X
}

= 1
I

I∑
i=1

Xti (10)

Ctf = E
{

(X − mf)(X − mf)
T
}

≈ 1
I

I∑
i=1

(Xti − mt
f )(X

t
i − mt

f )
T

≈ 1
I

I∑
i=1

XtiX
tT
i − mt

fm
tT
f (11)

where mt
f

is a vector of n2 elements, Ctf is a square matrix of n2

order.
If �t

i
(i = 1, 2, . . .n2) are the eigenvalues of covariance matrix

Ctf in descending order, et
i
=

[
et
i1, et

i2, . . .,  et
in2

]T
(i = 1, 2, . . .,  n2) are

the corresponding eigenvectors of Ctf , then transformation matrix
At of the image block is

At =

⎛
⎜⎜⎜⎜⎝

et11 et12 · · · et
1n2

et21 et22 · · · et
2n2

...
...

. . .
...

et
n21

et
n22

· · · et
n2n2

⎞
⎟⎟⎟⎟⎠

(12)

Centralize the image vector, which means calculation of the dif-
ference between the original image vector Xt and the mean vector
mt
f
, such that

∧
Xt = Xt − mt

f (13)

Accordingly, the principal component analysis is

S = (At)
T

∧
Xt (14)
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