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a  b  s  t  r  a  c  t

The  effects  of  atmospheric  turbulence  on  the  entanglement  of  spatial  two-qubit  states  that  are  prepared
using  the  signal  and  idler  photons  produced  by  parametric  down-conversion  are  studied.  Utilizing  the
non-Kolmogorov  model  for atmospheric  turbulence  and  Rytov  approximation  method,  we  quantify  the
effects of  atmospheric  turbulence  on  the  entanglement  of  the two-qubit  state  in terms  of Wootters’s
concurrence.  Our  results  show  that  the  effects  of  the  zenith  angle  of communication  channel  and  the
outer  scale  of  turbulence  on  the concurrence  of  a spatial  two-qubit  state  can be  ignored  and  the  smaller
inner  scale  of turbulence,  the  smaller  refractive-index  power  ˛,  the  shorter  wavelength  of beams  and  the
longer  propagation  distance  will  lead  to  the  larger  fluctuations  of  the  concurrence  of  a  spatial  two-qubit
state.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Quantum communication utilizing entangled two-qubit states
has many applications such as quantum teleportation [1], quantum
cryptography [2,3] and quantum superdense coding [4]. Sev-
eral publications have dealt with the influence of atmospheric
turbulence on quantum entanglement [5–7]. In these studies,
atmospheric turbulence has been taken to be the Kolmogorov
model and the optical effects of the atmosphere at any moment
have been described as a random phase operation eiϕ( r), which
are generally limited to short distance and horizontal propaga-
tion paths [8]. However, many new analytic results based on
the non-Kolmogorov turbulence spectrum model and the Rytov
approximation method have been published in recent years
[9–16] because there are important application areas like certain
ground/space links involving laser satellite communications for
which weak fluctuation theory may  be applied. In this paper, we
investigate the influence of non-Kolmogorov turbulence on the
entanglement of spatial two-qubit state in a slant channel based
on the Rytov approximation method. In Section 2, the effects of the
outer scale and the inner scale of turbulence and the zenith angle of
communication channel on the entanglement of a two-qubit state
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are investigated in detail. Numerical results are given in Section 3.
Conclusions are presented in Section 4.

2. The influence of non-Kolmogorov turbulence on the
entanglement of spatial two-qubit states

Fig. 1 depicts a generic scheme for preparing spatial two-qubit
states using the entangled photons produced by parametric down-
conversion (PDC). Jha and Boyd have analyzed it in detail [17]. The
signal and idler photons produced by PDC go through a pair of
double-holes located at plane z. They are detected in coincidence
by detectors Ds and Di located at positions rs and ri, respectively.
The spacing between the two signal and the idler holes is taken to
be much bigger than the two-photon correlation width �(2)

s (z) so
that the two-photon spectral densities for the pairs of transverse
positions (�s1, �i2) and (�s2, �i1) are negligibly small.

With the above assumption, the density matrix �qubit of the
two-qubit state can be represented by a density matrix having only
two non-zero diagonal elements. Therefore, the concurrence Cqubit,
which is a well-established method defined by Wootters [18,19] for
quantifying the degree of entanglement of a two-qubit state, can
be shown to be [5]

Cqubit = 2�k1k2W
(2)(rs1, ri1, rs2, ri2). (1)

where � = 1/[k2
1S

(2)(rs1, ri1) + k2
2S

(2)(rs2, ri2)] is a constant of pro-
portionality, W(2)( rs1, ri1, rs2, ri2) is the two-photon cross-spectral
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Fig. 1. Illustration of the notation relating to spatial two-qubit states propagation
through atmospheric turbulence.

density function [17], S(2)( rs1, ri1) = W(2)( rs1, ri1, rs1, ri1), and
the constant factors k1, k2 depend on the sizes of the apertures and
the geometry of the arrangement.

In the turbulent atmosphere the two photon cross-spectral den-
sity function W(2)( rs1, ri1, rs2, ri2) can be defined as

W (2)(rs1, ri1, rs2, ri2) = 〈tr{�tp
ˆ̃E

(−)

s1 (rs1) ˆ̃E
(−)

i1 (ri1) ˆ̃E
(+)

i2 (ri2) ˆ̃E
(+)

s2 (rs2)}〉.
(2)

Here ˆ̃E
(+)

s2 (rs2) is the positive frequency part of the field at position
rs2, etc. The symbol tr stands for the trace, and �tp is the density
matrix of the two-photon field produced by PDC. The ensemble
average 〈 · · · 〉 is to account for the statistical fluctuations introduced
by the turbulent medium.

Using the Rytov approximation [20], the field ˆ̃E
(+)

s1 (rs1) at posi-
tion rs1 = (�s1, z) can be written as

ˆ̃E
(+)

s1 (rs1) = Ê(+)
s1 (rs1) exp[ (rs1)]. (3)

Here Ê(+)
s1 (rs1) represents a deterministic field, whereas the function

 ( rs1) = �( rs1) + is( rs1) describes the effects of the atmospheric
turbulence on the propagation of a spherical wave, �( rs1) and s(
rs1) are terms imposed by atmospheric turbulence and account for

the stochastic log-amplitude and phase fluctuations, respectively.
Then Eq. (2) becomes

W (2)(rs1, ri1, rs2, ri2) = tr{�tpÊ
(−)
s1 (rs1)Ê(−)

i1 (ri1)Ê(+)
i2 (ri2)Ê(+)

s2 (rs2)}
× 〈 exp[ ∗(rs1) +  ∗(ri1) +  (ri2) +  (rs2)]〉. (4)

For pump beams that are of fully coherent Gaussian Schell-
model type, and considering the special case k1S(2)( rs1, ri1) = k2S(2)(
rs2, ri2), the concurrence of the spatial two-qubit state can be
written as [5]

Cqubit = 〈 exp[ ∗(rs1) +  ∗(ri1) +  (ri2) +  (rs2)]〉. (5)

Under weak turbulence, for which the wave-structure function
is dominated by phase, the concurrence of the spatial two-qubit
state can be written as [21]

Cqubit = exp { − 1
2

[D (rs1 − rs2) + D (ri1 − ri2) + D (rs1 − ri2)

+ D (rs2 − ri1) − D (rs1 − ri1) − D (rs2 − ri2)]},
where

D (rs1 − rs2) = 2|�s1 − �s2|5/3

�5/3
0

,

here �0 is the lateral coherence length of the spherical wave. Then

Cqubit = exp [ − 1

�5/3
0

(|�s1 − �s2|5/3 + |�i1 − �i2|5/3 + |�s1 − �i2|5/3

+|�s2 − �i1|5/3 − |�s1 − �i1|5/3 − |�s2 − �i2|5/3)].

For conceptual clarity, we  can also assume that the two pairs of
signal and idler apertures are placed at symmetric positions, that is,
�s1 = − �i1 and �s2 = − �i2. Then the concurrence Cqubit of the spatial
two-qubit state can be simplified as

Cqubit = exp [ − 1

�5/3
0

(2|��|5/3 + 2|��′|5/3 − |��  + ��′|5/3

− |�� − ��′|5/3)] = exp { − 1

�5/3
0

[2d5/3
1 + 2d5/3

2

− (d2
1 + d2

2 + 2d1d2 cos �)
5/6 − (d2

1 + d2
2 − 2d1d2 cos �)

5/6
]},

here �� = �s1 − �s2, ��′ = �s1 − �i2, d1 = |��| can be taken as a
measure of the effective physical size of the two-qubit state, and
d2 = |��′| can be taken as the measure of the separation between
the two  signal and the two idler apertures, and � is the included
angle between �� and ��′.

For the non-Kolmogorov channel, the spectrum of atmospheric
turbulence is represented as [9]

�n(	) = A(˛)C̃2
n

exp[−	2/	2
m]

(	2 + 	2
0)
˛/2

, 0 ≤ 	 < ∞,  3 <  ̨ < 5, (6)

here  ̨ is the spectrum power of the refractive-index
fluctuations(abbreviation as the refractive-index power),
A(˛) = (1/4
2)�(  ̨ − 1) cos(˛
/2), with �(˛) being the Gamma
function, 	0 = 2
/L0, L0 being the outer scale of turbu-
lence, 	m = c(˛)/l0, l0 being the inner scale of turbulence,
c(˛) = [�(5 − ˛/2)A(˛)(2/3)
]1/(˛−5), C̃2

n is a generalized refractive-
index structure parameter with unit m3−˛, which is altitude
dependent [12] and is given by

C̃2
n (z cos �) = 0.033(k cos �/h)(˛/2−11/6) [0.00594(v/27)2 × (h × 10−5)

10
exp(−h/1000) + 2.7 × 10−16 × exp(−h/1500) + C2

n (0) exp(−h/100)]
A(˛)

, (7)

where k = 2
/,  is a wavelength of light, h = z cos � is altitude,
v is the rms  wind speed, C2

n (0) is the structure parameter at the
ground and � is the zenith angle of communication channel. Com-
monly used values are v = 21 m/s and C2

n (0) = 1.7 × 10−14 m−2/3

in Hufnagel–Valley model. By the non-Kolmogorov spectrum Eq.
(6), the lateral coherence length of the spherical wave is given by

�0 =
(
A(˛)
2k2z

2(˛  − 2)
{	2−˛
m [2	2

0 − (2 − ˛)	2
m] exp

(
	2

0

	2
m

)
�

×
(

2 − ˛

2
,
	2

0

	2
m

)
−2	4−˛

0 }
∫ 1

0

C̃2
n (z cos ��)(1 − �)2d�

)−1/2

,

3 <  ̨ < 4, (8)

where �(a, x) is a incomplete gamma  function.
Therefore, the concurrence of the two-qubit states in non-

Kolmogorov atmospheric turbulence can now be written as:

Cqubit = exp [ −
(
A(˛)
2k2z

2(  ̨ − 2)
{	2−˛
m [2	2

0 − (2 − ˛)	2
m] exp

(
	2

0

	2
m

)

×�
(

2 − ˛

2
,
	2

0

	2
m

)
− 2	4−˛

0 }
∫ 1

0

C̃2
n (z cos ��)(1 − �)2d�

)5/6

× [2d5/3
1 + 2d5/3

2 − (d2
1 + d2

2 + 2d1d2 cos �)
5/6

− (d2
1 + d2

2 − 2d1d2 cos �)
5/6

]]. (9)
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