Accepted Manuscript

Impairment of the intestine barrier function in *Litopenaeus vannamei* exposed to ammonia and nitrite stress

Yafei Duan, Qingsong Liu, Yun Wang, Jiasong Zhang, Dalin Xiong

PII: S1050-4648(18)30235-3

DOI: 10.1016/j.fsi.2018.04.050

Reference: YFSIM 5266

To appear in: Fish and Shellfish Immunology

Received Date: 28 December 2017

Revised Date: 21 April 2018 Accepted Date: 23 April 2018

Please cite this article as: Duan Y, Liu Q, Wang Y, Zhang J, Xiong D, Impairment of the intestine barrier function in *Litopenaeus vannamei* exposed to ammonia and nitrite stress, *Fish and Shellfish Immunology* (2018), doi: 10.1016/j.fsi.2018.04.050.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 Impairment of the intestine barrier function in *Litopenaeus vannamei* exposed to

- 2 ammonia and nitrite stress
- 3 Yafei Duan, Qingsong Liu, Yun Wang, Jiasong Zhang*, Dalin Xiong
- 4 Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture; Key Laboratory of
- 5 Fishery Ecology and Environment, Guangdong Province; South China Sea Fisheries Research Institute, Chinese Academy of
- 6 Fishery Sciences, Guangzhou 510300, PR China

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

ABSTRACT Intestine barrier serves as the front-line of shrimp defense, which rely on its structural integrity, microbial composition, and mucus immune compounds. Mucins are the major organic components of the intestine mucus layer that contribute to the immunity of intestine mucus. In this study, we examined the histological structure, microbial composition, and mucin genes expression in the intestines of *Litopenaeus vanmei* under three different conditions: control, ammonia stress, and nitrite stress for 72 h. H&E stain showed that ammonia and nitrite stress exposure both damaged the intestine mucosal tissue. High-throughput 16S rDNA sequencing revealed that two stresses exposure decreased the bacterial diversity, and altered the composition of intestine microbial. Specifically, the dominant bacterial phyla Bacteroidetes abundance was increased, while Proteobacteria and Planctomycetes were decreased; at the genus level, *Formosa* abundance was increased and *Photobacterium* was decreased, opportunistic pathogens including *Nautella* and *Pseudoalteromonas* was also increased. Intestine mucus immune genes including *mucin-2* and *mucin-19* were up-regulated, while *mucin-1*, *mucin-5AC*, and *mucin-5B* were down-regulated in two stress exposure groups. These results revealed that ammonia and nitrite stress harmed the intestine barrier function of *L. vannamei* by

E-mail address: jiasongzhang@hotmail.com (J.S. Zhang).

 $^{^{*}}$ Corresponding author. South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou 510300, PR China.

Download English Version:

https://daneshyari.com/en/article/8498388

Download Persian Version:

https://daneshyari.com/article/8498388

Daneshyari.com