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a  b  s  t  r  a  c  t

In  this  paper,  the  maximum  photonic  band  gap  (PBG)  of two-dimensional  (2D)  photonic  crystal  (PC)  with
elliptical  air  holes  was  studied  by  the  finite-difference  time-domain  (FDTD)  method  based  on  changing
the ratio  (semi-major  axis  length  of  elliptical  hole  to the  filling  ratio)  and  azimuth  angle  of elliptical  holes,
respectively.  It  is shown  that  the  PBG  exhibits  a  peak  value  when  the  ratio  of  semi-major  axis  length  to
the  filling  ratio  is  equal  to  0.86  approximately  by  increasing  the filling  ratio,  and  central  frequency  and
the  low  boundary  frequency  of  PBG  decrease  linearly  with  the  increasing  of  semi-major  axis  length.  In
the  aspect  of  the  influence  of  azimuth  angle  from  0 to  90◦, the  PBG  presents  a  minimum  value,  and  central
frequency  and  the  low  boundary  frequency  of PBG  become  high  non-linearly  by  the  increasing  of  azimuth
angle  to  any  filling  ratio.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Two-dimensional (2D) photonic crystals (PCs) [1,2] have
attracted global attention for their unique characteristics for
manipulate light propagation and ease of fabrication, using mature
semiconductor fabrication techniques. Many characteristics and
applications of PCs are based on its PBG [3–5]. The PBG is thus
the essential property of PCs. In the past two decades, a mass of
theoretical and applied investigation of PCs was proposed. PCs are
ideal material for developing useful optical devices such as mirrors,
sensors, filters, delay lines, waveguides, and resonators [6–10]. As
well known, the triangular lattice [11] is of a special interest since
the structure can possess a large PBG for TE field polarization and
can even possess a complete PBG for both TE and TM field polariza-
tion [12] for some lattice parameters. In practice, the width of the
PBG becomes wider with the increasing filling ratio and dielectric
constant difference, but this conclusion is not exactly, it is further
revealed that the PBG width does not increase monotonically with
changing of above factors.

In this paper, we further study the influence of the ratio of semi-
major axis length to semi-minor axis length and azimuth angle of
elliptical air holes on the PBG of 2D triangular lattice photonic crys-
tal composed of elliptical air holes in background material with
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permittivity of ε = 10.5 using the finite-difference time-domain
(FDTD) method [13–15]. We  first investigate the influence of the
semi-axis ratio on the PBG with different filling ratio, the transmis-
sion spectrum are presented by theoretical calculations. We  then
study the effects of the variation of azimuth angle of elliptical holes
on the PBG. We  also discuss the relation between central frequency
and the low boundary frequency of the PBG and the semi-axis ratio
and azimuth angle, respectively.

2. Theory and model description

In this paper, the non-loss and non-magnetic material was  cho-
sen. The time dependent Maxwell’s equations in PCs can be written
in the following form,

∂�E

∂t
= 1

ε(�r)
· ∇ × �H (1)

∂ �H

∂t
= − 1

�(�r)
· ∇ × �E (2)

where ε(�r) is the position dependent permittivity and �(�r) = �0 is
permeability in vacuum. In a 2D case, the fields can be decoupled
into two  transversely polarized modes, namely, the TE mode and
the TM mode. These equations can be discretized in space and time
by a so called Yee-cell technique [16]. The following FDTD time
stepping formulas are the spatial and time discretizations of Eqs.
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Fig. 1. Schematic diagram of 2D triangular lattice PC.

(1) and (2) on a discrete 2D mesh within the x–y coordinate system
for the TE mode
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where n denotes the discrete time step, indices i and j denote the
discretized grid point in the x–y plane, respectively. �t  is the time
increment, and �x  and �y  are the intervals between two neigh-
boring grid points along the x and y directions, respectively. One
can easily see that the computational time is proportional to the
number of discrete points in the computation domain for a fixed
total number of time steps. In calculation, the time increment �t
and the space intervals �x  and �y  are satisfy numerical stability
condition

�t  = 0.95
c

(
1

(�x)2
+ 1

(�y)2

)−1/2

(6)

where c is the speed of light in vacuum. In addition, to obtain the
transmission of the PCW devices, one needs to calculate the average
power flow, which is computed by spatially integrating the energy
flux S(ω), i.e., the Poynting vector. The average power flux is defined
by the following formula,

Sx(ω) = 1
2

Re
[
Ey(ω) × Hz(ω)∗] (7)

In our 2D case and for a detector line, the power flow P(ω) can be
computed by integrating S(ω) along the detector line, the formula
is written as following,

P =
∫

Sx(ω) dω (8)

The transmission spectra are then obtained by the ratio between
the transmitted power and the incident power.

T(ω) =
∑

Pex∑
Pin

(9)

In the simulation, the proposed 2D triangular lattice PC structure
which is uniform in the z-direction and periodic in the x–y-plane
is shown in Fig. 1. Here ε0, ε denote the permittivity of air holes
and background materials, and Rx,  Ry indicate the semi-major axis
length and semi-minor axis length, respectively. The direction of
incident wave parallels with the y axis. To possess the univer-
sality, in what follows of date processing, normalized frequency
(a/�) and transmission coefficient were carried out in x-axis and
y-axis, respectively. In order to provide the optimal results, the H
polarized wave which can present the wider PBG structure com-
pared with E polarized wave was preferred. Special consideration
should be given at the boundary of the finite computational domain,

Fig. 2. Transmission spectrum with different filling ratio.

where the fields are updated using special boundary conditions as
information out of the domain is not available. Here, the perfectly
matched layer (PML) method is used for the boundary treatment.

3. Results and discussion

Large numbers of references reported that the PBG width is lie
on many different alterable factors such as filling ratio, dielectric
rod cross-section. At the beginning, the transmission properties of
PC with different filling ratio while the semi-major axis Rx is equal
to 0.45a are considered. The result is shown in Fig. 2. It is obvious
that the PBG width becomes wider by the increasing of filling ratio
named as f from 0.42 to 0.50 and the central frequency becomes
higher. The conclusion coincides with that other paper reported,
especially, the low frequency boundary of PBG becomes higher a
little while the high boundary shifts higher position fast. Thus, the
changing of central frequency is not dependent on the shift of the
whole PBG but the expansion of it.

The filling ratio is fixed, changing the valve of semi-major axis
(Rx) and semi-minor axis (Ry). The case of the filling ratio f = 0.42,
0.46, 0.50 is considered and the corresponding transmission char-
acteristics are obtained as shown in Fig. 3. The results reveal that
the width of the PBG does not change wider with the increasing of
the value of Rx all the while, but has a peak to each f. To transmis-
sion spectrum of case with f = 0.42, the width of PBG with Rx = 0.39a
is wider than that of Rx = 0.35a or 0.43a. Similarly, the PBG width
when Rx is equal to 0.41a is wider than that of Rx = 0.36a or 0.45a
to the filling ratio f = 0.46, and for the filling ratio f is equal to 0.50,
the PBG width of Rx = 0.43a is widest comparing with the width
of Rx = 0.39a and 0.47a. In a word, the PBG width does not widen
monotonously by the increasing of Rx.  We  then pay our attention
to the relation between the peak value of the PBG width and the
semi-major axis Rx,  and further discuss the condition when the
peak value appeared to obtain the universal conclusion.

After a large number of cases under the different value of Rx
calculated, we  find that the above relation has no universality, that
is, for different value of f, the values of Rx are different from each
other when the peak of PBG width appears. Here, we introduce
a variable r which indicates a ratio with Rx/f, the surprising phe-
nomenon comes into being, the peak value may appears when r
is equal to 0.86 approximately with the changing of f from 0.44
to 0.52. Where, the value of r is focused over the range from 0.6
to 1.2. The detailed transmission spectra are depicted in Fig. 4(a).
The central frequency becomes higher by the increasing of the f to
certain value of Rx,  as accord with the results of Fig. 2 presented.
But to fixed f, the central frequency becomes lower linearly by the
increasing of Rx,  as shown in Fig. 4(b). It is further revealed that the
changing of the central frequency is independence of the width of
PBG. Fig. 4(c) depicts the relation between low boundary frequency
of PBG and semi-major axis Rx.  It indicates that the low boundary
frequency decreases rapidly by the increasing of Rx and the differ-
ence of the value of low boundary frequency when Rx is equal to
0.35a and 0.50a becomes less and less by the decreasing of f. So, we
can say that the reduction of central frequency is induced mostly
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