
Optik 124 (2013) 3806– 3811

Contents lists available at ScienceDirect

Optik

j o ur nal hom epage: www.elsev ier .de / i j leo

Extended  Shape  of  Gaussian:  Feature  descriptor  based  on  element  set  of  matrix
Lie  group

Feng  Cheng ∗, Zuxi  Wang,  Dehua  Li
Institute for Pattern Recognition & Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 22 June 2012
Accepted 15 November 2012

Keywords:
SOG
Region covariance
Feature descriptor
Lie group
Visual tracking

a  b  s  t  r  a  c  t

In  this  paper,  we  extend  the  feature  descriptor  known  as  Shape  of  Gaussian  (SOG)  and  we call  the  new
descriptor  Extended  Shape  of  Gaussian  (ESOG).  SOG  has  a matrix  Lie  group  structure,  it use  the  geodesic
distance  to  measure  the  difference  between  two features.  First,  we decompose  geodesic  distance  on the
Lie  algebra  into  two  orthogonal  components.  By  adjusting  the  weights  of  components,  we  get a distance
sequence.  Then  we identify  that  every  element  in the  sequence  corresponds  to  an  element  of  the  original
Lie group,  a matrix.  All  these  matrices  form  ESOG.  Thus  the  new  descriptor  utilizes  a  matrix  set  rather
than  one  matrix  to  describe  feature.  In  this  view,  SOG  and  region  covariance  are  both  special  element  of
ESOG.  So  we  can  choose  different  element  from  it for  different  application.  Noting  that  different  elements
in  the  ESOG  describe  a  signal  in  a different  view,  we  propose  an  adaptive  method  to  select  appropriate
ESOG  element  for  visual  tracking.  The  element  selected  by this  method  is  called  Adaptive  SOG (ASOG).
ASOG  keeps  the  advantages  of  both  SOG  and  region  covariance  and  has better  accuracy  and  robustness
under  different  conditions.  Experiments  show  the  tracking  results  compared  with  SOG.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Feature descriptor is always important for machine learning and
computer vision. An appropriate descriptor brings the advantages
such as better discrimination, robustness and the decrease of cal-
culating cost.

In order to describe the characteristics of signal, some statistical
methods have been proposed, such as histogram [1–3] and a variety
of other methods based on it, such as histogram of oriented gradi-
ents [4] and LBP histogram [5] and so on. However, when we try to
use more feature, the computational cost will grow exponentially
and become unbearable.

In 2006, Tuzel et al. [6] proposed a descriptor called region
covariance. This method use covariance matrix to describe signal.
When using n features to represent a signal, the covariance matrix
only need a (n + 1)n/2 dimensional vector, however, the histogram
method needs nb dimension, where b is the number of bins of his-
togram. Tuzel also proposed a method to calculate the covariance
matrix using integral image, which reduces calculating cost greatly.
It has been used widely in tracking, detection and classification
[7–9]. In 2009, Gong et al. [10] proposed a descriptor called SOG.
This method is a natural extension of region covariance. It com-
bines mean vector and covariance matrix together while preserves
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the Riemannian structure. Because of the introduction of mean vec-
tor, SOG has an improved performance, especially when region
covariance is not reliable.

However, the mean vector and covariance describe signal from
different perspectives, the reliability of them changes in different
circumstances. Thus the analysis of SOG and an appropriate adjust-
ment strategy is necessary. So we  analyze the properties of SOG,
factorize it in two orthogonal directions. Based on that, we  pro-
posed extend SOG descriptor (ESOG) and an adaptive method to
select the appropriate descriptors from ESOG. The selected descrip-
tors are called as Adaptive SOG (ASOG).

The rest of the paper is organized as follows: In Section 2 we
present a short review of the SOG feature descriptor. In Section 3
we  analyze SOG and give the definition of ESOG. In Section 4 we
propose the method to choose ASOG. Experiments and conclusion
are given in Sections 5 and 6 respectively.

2. Shape of Gaussian (SOG)

SOG descriptor is the product of Shape of Signal Probability Den-
sity Function (SOSPDF). SOSPDF treats a pdf (probability density
function) as a geometry object (i.e. a curve of a surface) and then
characterize the pdf with the shape of the object. Histogram and
region covariance are both some kind of SOSPDF.

In a SOSPDF view, we  need to specify two  component to describe
a signal. The first one is the signal channels. A n dimensional chan-
nel signal is modeled as a n dimensional feature vector X ∈ �n. The
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element of the vector may  be the raw original data or values of other
features. We  choose the vector elements according to our purpose.
For example, in order to describe an image, the typical X may  have
a form as

X = [x, y, R, G, B, |Ix|, |Iy|,
√

I2
x + I2

y ] (1)

where x and y are horizontal and vertical coordinate respectively.
R, G and B correspond to values of the three color channel. Ix and
Iy are the gradients in horizontal and vertical direction. The sec-
ond component of SOSPDF is the pdf estimation. Different choice
of estimation method will produce different SOSPDF features. SOG
estimate the shape of pdf using full parameterized multivariate
Gaussian:

f (X) = 1

(2�)n/2|˙|1/2
e− 1

2 (X−�)T ˙−1(X−�) (2)

� = 1
N

N∑
i=1

xi (3)

˙ = 1
N − 1

N∑
i=1

(xi − �)(xi − �)T (4)

where � is mean value of X, and  ̇ is the covariance matrix. So any
n dimensional feature vector can be written as:

X = PX0 + � (5)

where X0 is a n dimensional standard multivariate Gaussian dis-
tributed feature vector with zero mean and standard variance 1.
Matrix P satisfies the equation  ̇ = PPT. P is unique if it is defined as
the solution of Cholesky factorization of ˙.  Then the SOG of vector
X is defined as a positive definite lower triangular affine transform
(PDLTAT) matrix M.

M =
[

P �

0 1

]
(6)

[
X

1

]
=

[
P �

0 1

][
X0

1

]
= M

[
X0

1

]
(7)

Thus, given feature vector X, a unique PDLTAT matrix M(X) describes
the relationship between X and X0.

PDLTAT matrices form a matrix Lie group [10]. A Lie group is a
group which is also a differentiable manifold such that the group
operations, multiplication and inverse, are differentiable maps. The
distance between two elements of a Lie group is measured by the
minimum length curve between them. That curve is called geodesic.
The tangent space of the identity element I forms Lie algebra. The
exponential map  relates elements of Lie group with points in Lie
algebra. And the geodesic length d between two group elements
M1 and M2 is given by

m = log(M)  (8)

M = exp(m) (9)

d(M1, M2) = || log(M−1
1 M2)|| = ||m2 − m1|| (10)

|| || is L2 norm.

3. Extended Shape of Gaussian (ESOG)

3.1. Orthogonal component of geodesic length d(M1, M2)

According to Lie group theory, Lie algebra of n dimensional PDL-
TAT is the set of matrices

m =
[

U v
0 0

]
(11)

where U is a n × n lower triangular matrix, and v is a n × 1 vector.
According to the definition of matrix exp operation and the

exponential map  between Lie algebra and Lie group, we know

M = exp(m) =
∞∑

k=0

mk

k!
=

[
eU rv

0 1

]
=

[
P �

0 1

]
(12)

So we get

P = eU (13)

� = rv (14)

where r is a function of matrix P. Here we select the inner product
of two matrix Am×n and Bm×n as

〈A, B〉 =
m×n∑
i=1

m×n∑
j=1

ai,jbi,j (15)

The norm of a matrix can be defined as Frobenius norm

||A||F =

√√√√m×n∑
i=1

m×n∑
j=1

ai,jai,j (16)

Because the matrix norm is equivalent to each other, so we use
Frobenius norm instead of L2 norm, then the distance between
matrix M1 and M2 can be written as the sum of two orthogonal
vector as

d(M1, M2) = ||m2 − m1|| =
√

||m2 − m3||2 + ||m1 − m3||2 (17)

m1 =
[

U1 v1

0 0

]
, m2 =

[
U2 v2

0 0

]
, m3 =

[
U1 v2

0 0

]
(18)

According to (15), it is easy to identify that 〈m2 − m3, m1 − m3〉 = 0,
which means they are orthogonal. Given X1 and X2, according
to (12)–(14), we know that ||m2 − m3|| only measures the differ-
ence between the covariance matrix ˙1 and ˙2. And ||m1 − m3||
mainly measures the difference of �1 and �2, as compared to �,
the matrix r usually has a much smaller influence on vector v. Then
the geodesic length d can be written as

d(M1, M2) = ||�d(m1, m3) + �d(m3, m2)|| = ||�d� + �d˙ ||, �d� ⊥ �d˙

(19)

3.2. Definition of ESOG

The most outstanding advantage of SOG, compared to region
covariance, is that SOG take the mean vector into account while
maintaining the Riemannian structure. When region covariance
fails to distinguish two  signals, information from mean vector will
help, thus SOG is more effective than region covariance.

On the basis of Section 3.1, we  can factorize the distance
between SOGs in two  orthogonal directions. So it is possible for us
to adjust the weight of mean vector and covariance matrix accord-
ing to their ability to discriminate signals. The distance between
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