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a  b  s  t  r  a  c  t

A  method  is proposed  to compensate  intrinsic  error  in  mirror  symmetry  absolute  test.  Because  of the
limitation  of  rotation  times  of  flat  A,  intrinsic  error  of CN�  terms  occurs  in  reconstructed  wavefronts  of
flats  A, B and  C.  If flat  A  is  rotated  to a new  azimuthal  position,  and the  wavefront  difference  between
two  measurements  before  and  after  rotation  is  calculated,  the Zernike  coefficients  of CN� terms  can  be
obtained  by  solving  coefficient  equations  due  to rotation  invariability  of  the  form  of  Zernike  polynomials
in  polar  coordinates.  Therefore,  the  intrinsic  error  of CN�  terms  may  be  compensated.  Because  the  amount
of  CN�  terms  is infinite,  the compensated  terms  are  decided  in  terms  of the  balance  between  intrinsic  error
reduction  and  computational  effort.  Computer  simulation  proves  the  validity  of  the  proposed  method.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

In interferometric optical testing, an optical surface with higher
precision is needed as fiducial reference if the tested surface is of
great precision. Testing accuracy of interferometric metrology is
generally conditioned by the precision of the reference surface. In
order to solve the problem of fiducial reference, an early idea is to
use a liquid-surface as the reference surface because of its curvature
radius equal to the earth surface [1]. However, the disadvantages
include it is easy to be disturbed by dust, mechanical vibration, cap-
illary action, temperature grads, magnetic force effect from outside
and so on. In addition, the tested optic must be mounted in hori-
zontal posture, which leads to a sag due to gravity effect, especially
for those with great size. In fact, the method is difficult to be applied
in testing practice.

A different idea is to use so-called absolute tests, which sepa-
rate error of interferometer reference wavefront from that of tested
surface. The best known of the absolute tests is the three-flat test
proposed by Schulz and Schwider [2,3]. The classical three-flat test
could only determine one linear profile from three setups or, with
a 180◦ rotation of one of the flats, two linear profiles from four
setups. There have been many efforts to extend the classical three-
flat test for profiles to full-aperture topography [4–16]. The typical
approaches include Zernike polynomial fitting method by Fritz [6],
even and odd function method by Ai [8], rotation symmetry method
by Evans [10], mirror symmetry method by Griesmann [14] and so
on. Of them, mirror symmetry method is believed as one of the
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simplest and most efficient methods because of simple measure-
data analysis, minimal computational effort, and high accuracy.

In mirror symmetry absolute testing, one of the three flats
should be rotated theoretically infinite times by equal azimuthal
interval in one period of 360◦, which cannot be implemented in
practice. If the mount of rotation times is N, there are intrinsic
errors of Zernike terms of angular order CN� for each flat wave-
front. Therefore if the CN� terms can be obtained, the wavefronts
of three flats will be compensated.

2. Principle of mirror symmetry method

In classical three-flat test, three flats A, B, C can be compared in
pairs using the measurement sequence (BA,  CA,  CB)  with a Fizeau
interferometer as shown in setups 1, 3, and 4 of Fig. 1. Because flat
B are needed as the reference plane in setup 1 and the tested plane
in setup 4, only one linear profile at x = 0 is determined from three
setups, which is called the well-known three-flat problem. It was
proved many years ago that the three-flat problem cannot be solved
by comparing more than three flats in the test. In mirror symmetry
method, a group of measurements of reference flat B against test flat
A are added as shown in setup 2 of Fig. 1, in which A is rotated N−1
times by the angular interval ��  = 2�/N. The wavefront W2(x, y)
can be realized by averaging N measurement results, thus removing
the rotationally variant component of flat A, which is expressed as
following [14]:

W2(x, y) = 1
N

N−1∑
k=0

{WB(−x, y) + [WA(x, y)]k��}

≈ WB(−x, y) + WR
A (x, y) (1)
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Fig. 1. Measurement sequence of mirror symmetry.

The operator [•]k� is used to indicate a rotation by an angle k�.
WR

A is the rotation invariant part of WA. The measurement sequence
shown in Fig. 1 corresponds to the flat test equation:

⎡
⎢⎢⎢⎢⎣

W1(x, y)

W2(x, y)

W3(x, y)

W4(x, y)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 1 0 0

0 0 1 0 1

1 0 0 1 0

0 1 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

WA(x, y)

WB(x, y)

WB(−x, y)

WC (−x, y)

[WA(x, y)]R

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The vectors in this equation can be split into even and odd com-
ponents. The even and odd components of wavefronts A, B and C
can be obtained by separately solving even and odd component
equations, subsequently which can be added to acquire the whole
wavefronts of three flats. The wavefront results can be expressed
as the following equation [14]:

⎡
⎢⎣

WA

WB

WC

⎤
⎥⎦ = 1

2

⎡
⎣ 1 1 −1 2 −2 0 0

1 −1 1 2 −2 −2 2

−1 1 1 2 −2 −2 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

We
1

We
3

We
4

W0
1

Wo
2

Wo
3

W0
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Operator [•]e indicates even component, and [•]o odd com-
ponent. For wavefront W(x, y), even and odd components are
expressed separately as

We(x, y) = 1
2 [W(x, y) + W(−x, y)] (4)

Wo(x, y) = 1
2 [W(x, y) − W(−x, y)] (5)

Mirror symmetry method provides a pixel-by-pixel solution to
three-flat problem, which only needs simple mirror operation at
y axis on the measurement wavefronts, thus requiring minimal
computational effort.

3. Error compensation method

3.1. Intrinsic error analysis

For WR
A (x, y) in Eq. (1), it should be written as

WR
A (x, y) = lim

N→∞

{
1
N

N−1∑
k=0

[WA(x, y)]k��

}
(6)

That is to say that only if the measurement amount of N is infi-
nite, it occurs that

W2(x, y) = WB(−x, y) + WR
A (x, y) (7)

If N is limited and W2(x, y) in Eq. (1) is substituted into Eq. (3),
error will be generated. In fact, if N is a limited amount, it occurs
that [10,14]

W2(x, y) = WB(−x, y) + WR
A (x, y) + ˝cN�

A (x, y) (8)

˝cN�
A is a part of rotation variance of wavefront A, and c repre-

sents positive integers. If a wavefront function is fitting to Zernike
polynomials, ˝cN�

A corresponds to the terms of angular order CN�.
Therefore if only ˝cN�

A is found, and W2 in Eq. (3) is replaced by
W2 − ˝cN�

A , the intrinsic error due to the limited rotation times can
be eliminated.

3.2. Error compensation

A wavefront function W defined in unit circle domain can be
expressed in the form of Zernike polynomials as [17]

W(r, �) =
∑
n,l

Rl
n[zl

n cos(l�) + z−l
n sin(l�)] (9)

zl
n and z−l

n are the coefficients of Zernike polynomials. If W is
rotated the angle of ϕ clockwise, the result is expressed as

[W(r, �)]ϕ = W(r, � − ϕ) =
∑
n,l

Rl
n[zϕ,l

n cos(l�) + zϕ,−l
n sin(l�)] (10)

where zϕ,l
n and zϕ,−l

n are

zϕ,l
n = zl

n cos(lϕ)  − z−l
n sin(lϕ) (11)

zϕ,−l
n = z−l

n cos(lϕ)  + zl
n sin(lϕ) (12)

The difference E between W and Wϕ can be expressed as

E(r, �) = W(r, �) − [W(r, �)]ϕ =
∑
n,l

Rl
n[el

n cos(l�) + e−l
n sin(l�)] (13)

Solving Eq. (9) to Eq. (13), it can be obtained that

zl
n = 1

2

[
el

n − e−l
n sin(lϕ)

1 − cos(lϕ)

]
(14)

z−l
n = 1

2

[
e−l

n + el
n sin(lϕ)

1 − cos(lϕ)

]
(15)

Therefore, the Zernike polynomial coefficients of ˝cN�
A in Eq. (8)

can be acquired if flat A is rotated a different angle in addition
to the routine N−1 rotation. However ϕ is not equal to 2�/cN, or
the denominator of the right of Eqs. (14) and (15) would be zero.
Because of the orthogonality characteristic of Zernike polynomials,
the polynomial coefficients of ˝cN�

A can be calculated by fitting only
the terms of angular order CN�, not using the whole terms, which
reduce the computational effort.
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