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a  b  s  t  r  a  c  t

Loopy  belief  propagation  (LBP)  algorithm  over  pairwise-connected  Markov  random  fields  (MRFs)  has
become  widely  used  for low-level  vision  problems.  However,  Pairwise  MRF  is  often  insufficient  to  capture
the statistics  of  natural  images  well,  and  LBP  is  still  extremely  slow  for application  on an  MRF  with  large
discrete label  space.  To  solve  these  problems,  the  present  study  proposes  a new  segmentation  algorithm
based  on  adaptive  LBP.  The  proposed  algorithm  utilizes  local  region  information  to  construct  a  local
region  model,  as  well  as  a  local  interaction  region  MRF  model  for  image  segmentation.  The  adaptive
LBP algorithm  maximizes  the  global  probability  of  the proposed  MRF  model,  which  employs  two  very
important  strategies,  namely,  “message  self-convergence”  and  “adaptive  label  pruning”.  Message  self-
convergence  can  improve  the  reliability  of a pixel  in  choosing  a  label  in  local  region,  and  label  pruning  can
dismiss  impossible  labels  for  every  pixel.  Thus,  the most  reliable  information  messages  transfer  through
the LBP  algorithm.  The  experimental  results  show  that  the  proposed  algorithm  not  only  obtains  more
accurate  segmentation  results  but also  greater  speed.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

The application of the Markov random fields (MRFs) model
for solving early vision problems has recently resulted in exciting
advances. The MRF  model describes the probabilistic relationship
between an observed image and an estimated image or scene pix-
els. However, the statistical inference in the MRF model remains
NP-Hard [1]. Good approximation techniques based on loopy belief
propagation (LBP) [2] and graph cuts [3,4] have been developed and
demonstrated for a number of computer vision problems [3,5–7].
However, two problems need to be considered. The first prob-
lem is that conventional Pairwise MRF  lacks the representational
power required to capture the rich statistics of the natural image
[8]. Although several higher-order learning algorithms have been
proposed, including [9–11], the learning of such algorithms still
presents hard problems [12]. Based on Pairwise MRF, Wang [13]
proposed a super-pixel MRF  for incorporating local data interac-
tion. On the other hand, Jia [14] showed the over-segmentation
of an image by a mean shift algorithm and represented it using
a region adjacent graph (RAG). LBP was then run over the RAG
for image segmentation. However, the non-overlapping region
often produced blocky or staircase artifacts between neighboring

∗ Corresponding author at: MoE  Key Lab for Intelligent Networks and Network
Security, Xi’an Jiaotong University, Xi’an 710049, China. Tel.: +86 189 92816228;
fax: +86 029 82207827.

E-mail address: duplin@sina.com (S.-J. Xu).

regions. The present paper proposes an overlapping RAG for solving
this problem. As such, the segmentation problem can be converted
to a locally aggregated global optimization problem.

Another problem is the inefficiency of the LBP algorithm in terms
of probability inference for the maximum a posteriori (MAP) esti-
mation of the MRF  model with a large discrete label space. The
computational complexity of the LBP is quadratically proportional
to the number of labels, which obscures the application of this
algorithm in a number of computer vision problems. A simple
strategy in maintaining the tractability of inference is the reduc-
tion of the number of possible states for each node in the MRF. A
number of studies have recently developed several efficient strate-
gies. Chan [15] proposed a local belief aggregation (LBA) algorithm
that restricts the number of messages aggregated from a neigh-
boring node. However, the LBA may  sometimes incorrectly discard
segment states, and this algorithm remains very slow, thus hin-
dering its practical application on large-scale graphs. Scott et al.
[16] used a hierarchical scheme, in which “rough” results com-
puted at higher levels initialize the search space at lower levels
and enable the message computations through the use of a smaller
search space compared with traditional belief propagation. How-
ever, this hierarchical BP may  also lose states in lower levels. Lan
et al. [17] proposed an approximation BP algorithm that used an
adaptive state space method to reduce the number of states in each
pixel in higher-order MRF. The experimental results showed that
the learned higher-order model outperforms the learned Pairwise
MRF  model both visually and quantitatively. However, the learn-
ing of the Fields of Experts models, which are exploited for learning
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Fig. 1. Local region MRF  model.

higher-order MRF, presents a hard problem. Similar to the afore-
mentioned approaches, this method still has problems in terms of
losing states.

The present study builds an overlapping local region MRF
model based on Pairwise MRF, thereby incorporating more context
information into the local region. Furthermore, the current study
proposes an adaptive LBP as inference in the MAP  probability based
on the proposed local region MRF. The proposed algorithm utilizes
two optimization schemes, namely, “message self-convergence”
and “adaptive label pruning.” Based on these two schemes, dur-
ing the iteration processing, the probability of choosing the label
assigned to more pixels in a local region rapidly increases while
all others rapidly decrease. This step discards a few labels with
minimal probability. The final step, according to the MAP  criterion,
obtains the segmentation results. The experimental results show
the effectiveness of the proposed algorithm.

The remainder of the present paper is as follows: the next sec-
tion presents the proposed MRF  segmentation model. Section 3
describes the details of the adaptive LBP algorithm. Section 4 dis-
cusses the experiments and results. Finally, Section 5 concludes the
current paper and states the final remarks.

2. Local region MRF

An MRF  image is defined on a W × H rectangular lattice. Let
S = {s = (i, j)|1 ≤ i ≤ W,  1 ≤ j ≤ H} be the set of image lattice sites. Let
X = {xs|s ∈ S, xs ∈ {0, 1, 2, ..., 255}} denote the observed image, and
Y = {ys|s ∈ S, ys ∈ �}  express the label field, where � = {1, ..., L} is a
common label space, and L is the number of classes.

In the Pairwise MRF  framework, the present study defines
a pixel-labeling problem as assigning to every pixel xs a label
ys. According to the Bayesian theorem, the label process can be
described as the MAP  problem for an appropriately defined MRF
[18]:

Y∗ = argmax
x
P(Y |X, �)  = argmax

x

1
Z

∏
s

�s(xs, ys)
∏
sr

 sr(ys, yr) (1)

where P(Y|X,�) is a global probability of MRF, � is vector of hyper-
parameters of MRF, �s(xs,ys) is the conditional probability density
function of xs given a label ys,  sr(ys,yr) is the prior probability
function of the label field Y, and Z is a normalization constant.

However, Pairwise connected models are often insufficient for
capturing the full complexity of the joint distribution of the prob-
lem [8]. The current section describes an overlapping local region
MRF  to solve this problem. As shown in Fig. 1, for the observed
image X, let a local region ws with size w × w be centered at pixel
s, such that the observed image X is partitioned into W × H sub-
images, where W and H are the width and height of the image,
respectively. Each subimage is assumed to be an MRF. In any subim-
age, the intensities of any two pixels are independent of each other.
The relationship between the observed subimage and its label field
is given as a Gaussian mixture model (GMM), and the Gaussian

conditional probability function is defined as follows:
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where |ws| is the number of pixels belonging to local region ws;
� = (�1, �1, �2, �2, · · · �L, �L); and �l and �l are the mean and
variance of class l, respectively.

The label filed in each subimage is also assumed to be an MRF.
To reduce the computational complexity, the assumption is that
the label of a pixel depends only on the labels at its local region. As
the Hammersley–Elifford theorem suggests [19], the joint distribu-
tion of all labels in the local region follows a Gibbs distribution and
follows the form:

Pws (ys|yws , ˇ) =
exp

{
−ˇHws (y)

}
∑
y ∈ L

exp
{
−ˇHws (y)

} (3)

where  ̌ is the prior hyperparameter of the Gibbs distribution. In
the local region, the prior function Hws (y) is defined as:

Hws (y) = 1∑
(sr) ∈ ws

{
1 − ı(ys, yr)

} (4)

where ys is the label of the center site s, and yr∈N(ys) is the neigh-
borhood label of ys in the local region. Hws (y) is a adaptive local
region prior function since the labels ys and yr are changed in
each iteration. The present study considers pairs of symmetrical
cliques within the 3 × 3 neighborhood of each pixel. ı(ys,yr) is the
kronecker delta:

ı(ys, yr) =
{

1 if ys /= yr

0 else
(5)

where
∑

(sr) ∈ ws

{
1 − ı(ys, yr)

}
is the number of neighbors equal to

the central label. In a local region, the local Gibbs prior information
of each pixel is measured by counting the number of neighbors
label equal to the central label. A greater number denotes a larger
number of pixels with higher probability chose this label in the local
region, and vice versa, in which pixels tend to take the same label
value.

According to the Bayesian rule and Eqs. (2) and (3), the local
region posterior probability can be represented as:

PLocal(ys|xs, xws , yws ) ∝ P(xs, xws\s|ys, yws\s)P(ys|yws\s)

=
∏
r ∈ ws\s

P(xs|ys)P(xr |yr)P(ys|yws\s) (6)

where ws\s is the set of sites in the local region ws without the
center site s.

The estimation for the optimal label y* is the process of maxi-
mizing the following posterior:

y∗ = arg max
x

PLocal(ys|xs, xws , yws ) ∝ arg max
x

P(xs|ys)P(ys|yws\s)

×
∏
r ∈ ws\s

P(xr |yr) (7)

From the local posterior probability Eq. (6), the estimate of label
xs not only considers the intensity field of the neighborhood yws but
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