Accepted Manuscript

Analyzing μ -Calpain induced proteolysis in a myofibril model system with vibrational and fluorescence spectroscopy

Petter Vejle Andersen, Jens Petter Wold, Eva Veiseth-Kent

PII: S0309-1740(17)31232-9

DOI: doi:10.1016/j.meatsci.2018.02.009

Reference: MESC 7475

To appear in: Meat Science

Received date: 8 September 2017 Revised date: 10 January 2018 Accepted date: 9 February 2018

Please cite this article as: Petter Vejle Andersen, Jens Petter Wold, Eva Veiseth-Kent , Analyzing μ -Calpain induced proteolysis in a myofibril model system with vibrational and fluorescence spectroscopy. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Mesc(2018), doi:10.1016/j.meatsci.2018.02.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Analyzing μ -Calpain induced proteolysis in a myofibril model system with vibrational and fluorescence spectroscopy

Petter Vejle Andersen **, Jens Petter Wold *, Eva Veiseth-Kent *

^a Nofima AS, Osloveien 1, 1430 Ås, Norway

E-mail adresses:

Petter Vejle Andersen: petter.andersen@nofima.no

Jens Petter Wold: jens.petter.wold@nofima.no

Eva Veiseth-Kent: eva.veiseth-kent@nofima.no

*Corresponding author at: Nofima AS, Osloveien 1, 1430 Ås, Norway. Tel.: +47 64 97 04 90.

ABSTRACT

Degree of post-mortem proteolysis influences overall meat quality (e.g. tenderness and water holding capacity). Degradation of isolated pork myofibril proteins by μ -Calpain for 0, 15 or 45 min was analyzed using four spectroscopic techniques; Raman, Fourier transform infrared (FT-IR), near infrared (NIR) and fluorescence spectroscopy. Sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to determine degree of proteolysis. The main changes detected by FT-IR and Raman spectroscopy were degradation of protein backbones manifested in the spectra as an increase in terminal carboxylic acid vibrations, a decrease in CN vibration, as well as an increase in skeletal vibrations. A reduction in β -sheet secondary structures was also detected, while α -helix secondary structure seemed to stay relatively unchanged. NIR and fluorescence were not suited to analyze degree of proteolysis in this model system.

Keywords

Myofibrils; proteolysis; proteins; vibrational spectroscopy; fluorescence1. INTRODUCTION

The degree of post-mortem proteolysis in meat has been linked to important quality parameters of fresh meat, such as water holding capacity (Calvo, Toldra, Aristoy, Lopez-Bote, & Rey, 2016; Huff-Lonergan & Lonergan, 2005; Hughes, Oiseth, Purslow, & Warner, 2014; Kristensen & Purslow, 2001; Melody et al.,

Download English Version:

https://daneshyari.com/en/article/8502983

Download Persian Version:

https://daneshyari.com/article/8502983

<u>Daneshyari.com</u>