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a  b  s  t  r  a  c  t

In  the  paper,  a  multiframe  blind  image  deconvolution  method  based  on  total  variation  and  framelet
regularizer  is  proposed.  An  adapted  version  of  the  split  Bregman  method  is  proposed  to  efficiently  solve
the  resulting  minimization  problems.  In  each  iteration,  four  sub-problems  need  to  be  solved,  one  of  which
can  be  very  efficiently  and easily  solved  via  fast  Fourier  transform  implementation  or  closed  form  solution.
Both simulated  noisy  and  blurred  frames  and  real degraded  frames  are  used  to verify  the  effectiveness  of
the  proposed  method.  Comparative  experimental  results  show  that  the  proposed  method  can  efficiently
remove  the  blur  and  noises  and  restore  high  quality  sharp  image.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Deconvolution of images is a classical inverse problem in many
areas of image processing and computer vision, such as astronomy
[1,2], photography, surveillance, remote sensing. Image deconvo-
lution in such fields can often formulated as linear ill-posed inverse
problem, where the degraded image is obtained by convolving the
original image with a spatially invariant point spread function (PSF)
and then added with noise.

In some applications, such as video cameras, astronomical, and
microscopy imaging, the system PSF is unknown or can not be
obtained accurately because the exact knowledge about the mech-
anism of the image degradation process is not available. Therefore,
the goal of deconvolution is to recover the latent image and PSF
from the degraded observations where the complete knowledge
about the degradation process and noise is unavailable, we  often
call it blind deconvolution (BD) problem. It is known that blind
deconvolution is ill-posed, undetermined problem that has a mul-
titude of solutions, not all of which are physically meaningful. To
overcome this difficulty, regularization techniques have to be used
in order to enforce stability, as well as incorporate prior knowl-
edge about the solution. To date, numerous approachs have been
developed to solve blind deconvolution problems [1,3–11]. These
methods can be broadly classified into two categories in terms of
the number of frames being used, i.e., single frame (channel) and
multiframe (channel) blind deconvolution (MFBD).
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Single frame blind deconvolution processes each frame inde-
pendently, and this kind of blind deconvolution approaches can be
divided into those that estimate the blurring kernel first and then
some of the nonblind methods is used to restore the latent image
[11,12] and those that estimate the latent image and the PSF simul-
taneously [3–5,9,10]. For the later methods, a typical approach is to
formulate the blind deconvolution problem as a joint optimization
problem based on regularization framework.

If several versions of the captured image of one scene are
available and differ only in the blur kernel, they can be used
for enhancing the quality of the blind deconvolution algorithm.
This task is the above-mentioned MFBD task. The MFBD problem
has recently attracted considerable attention [1,6–8,13]. Typical
examples of such multiframe measuring processes are photogra-
phy, remote sensing, and astronomy, in which the same scene is
observed at different time instants through a time-varying inho-
mogeneous medium such as the atmosphere. In the MFBD case,
the restoration algorithm can exploit the redundancy present in the
observations, i.e., missing information about the latent image in one
frame may  be supplemented by information in the other frames,
and, in principle, it can achieve performance not obtainable from a
single measure. Sroubek et al. [6] proposed a method that imposes
the total variation (TV) constraint on the image to handle noise
and incorporates a coprimeness assumption for the PSF, and then
simultaneously minimizes an energy function with respect to the
image and the PSFs. This allows us to handle inexact PSF sizes and to
compensate for small misalignment in input images, which made
MFBD deconvolution more practical. Katkovnik et al. [13] proposed
a projection gradient algorithm based on anisotropic LPA-ICI (Local
Polynomial Approximation-Intersection of Confidence Intervals fil-
ters), which can efficiently restore images contaminated by white
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Gaussian noise by recursively iterate in frequency domain and LPA-
ICI filters in spatial domain alternately. This algorithm, however,
is too complicated to implement and time consuming because of
LPA-ICI filters.

In summary, multiple frame images of the same scene provide
much more information than a single frame image does, which
leads to a better configuration for recovering a clear image of the
scene. But, some new challenging computational problems also
arise when taking a multi-frame approach.

The split Bregman method was first proposed by Goldstein
and Osher in [14]. It can efficiently solve general �1-regularized
optimization problems with multiple �1-regularized terms. If the
considered optimization problem is uniquely solvable, then the
convergence of the split Bregman iteration for �1-regularization
term has been proved by Cai et al. [15] and the iteration method
has a relatively small memory footprint and is easy to code by
users. These properties are significant for large scale MFBD prob-
lems. In this paper, we propose two MFBD algorithms based on
the split Bregman method. We  formulate the MFBD problem as a
joint optimization problem with respect to the image and the PSFs.
First, the TV regularization is imposed on the image and the PSFs,
respectively. Due to the nondifferentiation of the TV norm, some
numerical problems are encountered. Considering the computa-
tional complexity of TV regularization, the split Bregman iteration
is applied to solve the optimization problems based on TV reg-
ularization. Its basic idea is to introduce an auxiliary variable to
decompose a complex optimization problem into two  independent
suboptimization problems, which are easy to implement. It can be
considered as an extension of the single frame model by Li et al.
in [16] to the multiframe case. In our method, the sizes of the true
PSFs support are supposed to be unknown.

Recently, framelet regularization has been introduced in blind
motion deblurring [9], which assumes that natural images have
sparse approximation under the framelet transform. Since framelet
transform has the ability of multiple-resolution analysis in nature,
different framelet masks reflect different orders of difference oper-
ators, which can adaptively capture multi-scale edge structures in
an image. Therefore, it can well preserve various types of edges
simultaneously. It motivates us to apply framelet regularization in
MFBD to regularize the image. The proposed method can preserve
different scale structure information of the images and produce a
sharper solution. Moreover, it can efficiently suppress noise.

The organization of this paper is as follows. Section 2 describes
the multi-frame blind deconvolution algorithm based on the vari-
ation model. Detailed numerical algorithms are illustrated in
Section 3. Some experimental results and comparative analysis are
given in Section 4. Finally, Section 5 concludes this paper.

2. Proposed method

We  formulate the problem in the discrete domain and use fre-
quently vector-matrix notation throughout the paper. Images and
PSFs are denoted by italic letters and their corresponding vecto-
rial representations (lexicographically ordered pixels) are denoted
by bold letters. The MFBD problem assumes that we  have K > 1
degraded frames {g1, g2, . . .,  gK} that are related to the latent image
u according to model

gk = hk ∗ u + nk, 1 ≤ k ≤ K, (1)

where hk represents an unknown PSF and nk is the additive noise
in the kth observation. Operator ∗ stands for convolution. In the
matrix-vector notation, (1) becomes

gk = Hku + nk = Uhk + nk, (2)

where matrices Hk ∈ R
N×N denotes the matrix notation of the con-

volution of the point spread function (PSF) h ∈ R
N and U ∈ R

N×N

denotes the matrix formed from the latent image u ∈ R
N (N is the

number of pixels of the image.).
In the multiframe framework, the aim of MFBD is to restore

the latent image and the PSFs in (1) simultaneously employing the
available degraded observations. We  propose to estimate u and hk
as a minimizer of the optimization problem

min
u,hk

1
2

K∑
k=1

‖hk ∗ u − gk‖2
2 + ˇ

K∑
k=1

R1(hk) + ˛R2(u), (3)

where the first term is the data term and R1 and R2 are regu-
larizers of the PSFs and the image, respectively.  ̨ and  ̌ are the
regularization parameters. In practice, simultaneous estimation of
the image u and hk from (2) is a difficult task, the most commonly
used approach to solve (2) is called alternative minimization (see
[5] for example) and will be applied here as well. The optimization
problem (2) can be divided into two  separate subproblems using
the alternative iteration scheme

h-step: min
hk

1
2

K∑
k=1

(
‖hk ∗ u − gk‖2

2 + 2ˇR1(hk)
)

, (4)

u-step: min
u

1
2

K∑
k=1

‖hk ∗ u − gk‖2
2 + ˛R2(u). (5)

The solution can be reached by iteratively implementing h-step and
u-step until convergence.

2.1. Formulation of the regularization terms

2.1.1. h-Step
h-Step in (4) is a nonblind deconvolution problem but the data to

recover is the PSF hk. Some common PSFs, such as the box-shaped
motion blur and out-of-focus blur, can be regarded as piecewise
constant functions, it is logical to regularize these PSFs by the TV
norm. It is simply because piecewise constant functions can be
sparsely approximated by the gradient transform. In the matrix-
vector form, the isotropic TV model of the PSFs can be written
as

R1(hk) =
∑

i

√
(Dxhk)2

i + (Dyhk)2
i , (6)

where Dx and Dy are matrices performing derivatives with
respect to x and y, respectively. For each given gk, each PSF can
be computed separately by solving the following optimization
problem

min
hk

1
2

‖Uhk − gk‖2
2 + ˇ

∑
i

√
(Dxhk)2

i + (Dyhk)2
i . (7)

2.1.2. u-Step
u-Step in (5) is a nonblind image deconvolution problem.

Inspired by the excellent edge preservation property of the TV reg-
ularization, we also use the TV regularizer to regularize the latent
image. Thus, in the matrix-vector notation, u-step in (5) rewrites
as

min
u

1
2

K∑
k=1

‖Hku − gk‖2
2 + ˛

∑
i

√
(Dxu)2

i + (Dyu)2
i . (8)

Although the TV model has the capable of preserving important
attribute of an image, i.e., edges, meanwhile, the textures and detail
information of the images on the regions of complex structures may
be removed in the process of the image restoration. Motivated by
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