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a  b  s  t  r  a  c  t

Lensless  ghost  imaging  with  Gaussian  Schell-mode  pulse  beam  through  a  slant  non-Kolmogorov  tur-
bulent atmosphere  channel  has  been  studied,  based  on  the  optical  coherent  theory  and  the  extended
Huygens–Fresnel  integral.  The  analytical  ghost-imaging  formulas  have  been  derived  by  the  approxima-
tion  of  the  form  of  spatial–temporal  coherence  function  of  the  laser  field  in  the product  of the  spatial  and
temporal  coherence  function,  and  the  quadratic  approximation  of  the  wave  structure  function.  Based  on
these  formulas,  we  find  that  the  image  quality  is  influenced  by  the  turbulence  strength,  the  propagation
distance,  the  zenith  angle  of communication  channel,  the  fractal  constant  of  the  non-Kolmogorov  power
spectrum  of  atmospheric  turbulence,  the  pulse  duration  of  source  and  the  coherent  parameters  of  the
partially  coherent  light.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Ghost imaging, also known as coincidence images or “correlated” imaging or “two-photon” imaging, was first implemented with
position-momentum entangled photons [1]. An object is imaged by placing it in the path of one photon of an entangled pair. This signal
photon, as it has come to be called, is then allowed to fall onto a spatially nonresolving bucket detector. As its name implies, the bucket
detector collects all the signal photons that make it past the object. The idler photons, on the other hand, are incident upon a spatially
resolving detector. A sharp image is obtained in the coincidence counts of the two detectors. The term “ghost image” was coined for this
phenomenon based on the fact that the image was formed without directly obtaining any spatially resolved image information from the
object itself [2]. It was soon shown that ghost imaging relied solely on the spatial correlations of the two  light fields. The same effect was
reproduced by using randomly but synchronously directed twin beams of classical light [3]. The only benefit of using entangled photons
was found to be that imaging could be performed both in the near and far fields, without having to change the source [4]. This is a direct
consequence of the fact that entangled photons have strong correlations in both position and momentum, which correspond to correlations
in the near and far fields, respectively. In the case of ghost imaging with an entangled source, the choice of whether to measure in the
image plane or the diffraction pattern is left to the observer, instead of being determined by the source.

The possibility of using classic light for ghost imaging was first pointed out in Ref. [3] and later several efforts have been made in
order to compare quantum and classic ghost imaging [4–6]. Ghost imaging with thermal and pseudo-thermal light are revealed in Refs.
[7–10]. Cai and Zhu [11,12] discussed Ghost imaging with scalar partially coherent light and the influence of the degree of coherence of
the illumination beam on the image. Since then numerous papers on various theoretical, numerical and experimental aspects of ghost
imaging were published [13–20]. Recently, Ghost imaging with thermal light in atmospheric turbulence are studied based on the extended
Huygens–Fresnel integral in Refs. [21–23] and Ghost imaging with partially coherent light in the presence of turbulent atmosphere in both
arms of the arrangement is predicted in Refs. [24,25].

In this paper we theoretically formulate lensless ghost imaging with Gaussian Schell-mode pulse beams in non-Kolmogorov turbulence.
In Section 2, we  derive general expressions relating to ghost imaging by means of Gaussian Schell-pulse beams and then use this formulation
for developing analytic formulas for ghost imaging in non-Kolmogorov turbulent channel (Section 3). Finally, we summarize the findings
in Section 4.
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Fig. 1. Geometry of a lensless ghost imaging system in atmospheric turbulence.

2. Ghost imaging with Gaussian Schell-beams

Let’s consider the lensless ghost imaging (LGI) scheme [13] shown in Fig. 1 a partially coherent pulse source Es is split into two beams
by the beams splitter. For the sake of simplicity, we  will only consider the one-dimensional case. The two beams propagate through two
different channels. There is an unknown object O(v) located in the channel one, and the detector d1 used in this channel is a bucket detector.
The distance between the source and the object, the source and the reference detector, the object and the test detector d2 are z0, z1 and z2
respectively. A correlator is used to measure the correlation function G(x1, x2) of the intensity fluctuations.

In the turbulent channel, based on the extended Huygens–Fresnel integral [26], the field E1(x1, t) in the detector d1 (see Fig. 1) can be
written as

E(x1, t) = 1
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where k = 2�/� is the wave number, � is the wavelength, O(v) denotes the transmission function of the object, Es(u, t) denotes the source
field and Es(u, t) = Es(u)E(t), E(t) = exp[−(t/T1)2 − iω0t], T1 is the duration of a single pulse in source plane [27], ω0 is the central frequency,
 (v, u) and  (x1, v) are the complex phase which represent the random part of a spherical wave propagating through the atmosphere from
the source to the object O(v) and from the object to the detector d1, respectively. Similar to the channel one, the field at d2 is given by
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Based on the optical coherent theory, in the one dimensional case, the time-dependent correlation function containing the imaging of
the object is [12,13]

G(x1, x2, t) = 〈I(x1, t)I(x2, t)〉 − 〈I(x1, t)〉〈I(x2, t)〉 (3)

here I(x1, t) and I(x2, t) denote the time-dependent intensities in the channel one and two, respectively. The brackets denote an average
over all realizations of the field.

Assuming the complex phase  (x1, v),  (x2, u) and  (v, u) obey the Gaussian statistics with a zero-average mean, applying the Gaussian
moment theorem, and according to the form of spatial–temporal coherence function of the laser field in the product of the spatial and
temporal coherence function [28], we have the intensity correlation
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where 〈· · ·〉t denotes the temporal ensemble average of turbulent atmosphere, and 〈· · ·〉a denotes the spatial ensemble average of turbulent
atmosphere.

The last term of Eq. (3) can be expressed as
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