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a  b  s  t  r  a  c  t

Despite  the  practical  significance  of  slanted  volume  holographic  gratings,  most  research  presented  in  the
photopolymer  literature  involves  the  use  of  unslanted  reflection  or transmission  geometry  gratings.  A
physically  accurate  electromagnetic  model  of  the slanted  holographic  non-uniform  gratings  recorded  in
photopolymers  is  necessary  in  order  to  extract  key  volume  grating  parameters.  In  this  paper  we  present  a
model,  based  on  a set  of two  coupled  differential  equations,  which  include  the  effects  of:  (i)  an exponential
decay  of refractive  index  modulation  in the  direction  of  the  beam  propagation  due  for  example  to the
effects  of  dye  absorption  with  depth;  (ii)  Gaussian  profile  of  refractive  index  modulation  due  to  recording
by finite  Gaussian  beams,  and  (iii)  a  quadratic  variation  in  the  spatial  period  of  the  grating  (chirp)  arising
due  to  non-uniform  average  index  and  thickness  changes,  i.e.,  shrinkage  and  swelling.  Analytic  results  and
numerical  simulation  are  presented.  In Part  II  the  model  developed  in  Part  I  is  applied  to  fit  experimental
data,  i.e.,  angular  scans,  of  slanted  gratings  recorded  in  a polyvinylalcohol/acrylamide  based  material  for
different  slant  angles  in  order  to extract  key  volume  grating  parameters.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Photopolymers are non-latent self-processing recording materials, i.e., they directly respond during exposure at a sensitised wavelength
without the need for post-processing [1–4]. Even if a constant illuminating pattern (amplitude and spatial period) is used during exposure,
non-uniform gratings are in general recorded due to the material processes taking place during grating formation [1,2,4–10]. We  examine
the case of a two plane wave interference pattern exposure of a photopolymer layer. The grating typically begins to form a few seconds
after the beginning of the exposure (delayed in some cases due to inhibition [2,7]) and thereafter continues to grow. The grating may also
evolve post-exposure due to dark effects [2,11–13]. In the material layer photon absorption and the associated photo-chemical reactions
lead to primary radical production, which initiates polymer chain formation in the bright (exposed) regions [2,7,11–16].  It is known that
in non-latent materials the presence of the growing grating can affect the exposing beams propagating through the volume, altering the
interference pattern locally, over time and leading to changes in the grating shape recorded in the photopolymer volume [1,2,4]. Grating
shape non-uniformities can also be caused by material non-linearity [1,2,7,17],  photosensitiser absorption [18–20],  the profiles of the
exposing beams [18], as well as thickness variations of the layer with time. All of these effects give rise to non-uniform monomer and
polymer distributions in the material, resulting in average refractive index variations and changes in the grating shape and period within
the layer [4,8–10,18,21].

In this two part paper we examine sinusoidal exposure of a polyvinylalcohol/acrylamide (PVA/AA) photopolymer layer [7] to produce
transmission geometry volume gratings. At the start of the exposure the photosensitiser (dye) absorbs most light at the front (or input) side
of the photopolymer layer (where most photons are present). Excited dye dissociates and produces free radical, which, if inhibition effects
do not take place, initiates the polymerisation process. As the monomer (acrylamide) is used up it is converted into the denser polymer
form (polyacrylamide) which has a higher value of refractive index. As this process continues a monomer concentration gradient arises.
This leads to monomer diffusion into the exposed regions (i.e., from the dark fringes and from the back of the material layer). Such monomer
diffusion can contribute to producing a higher value of the grating refractive index modulation [22]. The larger number of photons initially
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absorbed at the front of the layer, and the greater the amount of monomer that diffuses into the bright regions, the larger the variations
in the refractive index changes generated between the front and back of the layer. The rate, at which polymerisation takes place, depends
on the availability of the reactants (dye, co-initiator, monomer) and on the exposing intensity. Furthermore as the exposure takes place,
the location at which maximum polymerisation takes place, will change within the material layer as for example the position at which the
maximum dye concentration remaining available to absorb changes from the front input to the back of the layer [23].

Other effects can also alter the recorded grating uniformity with depth are the volume changes, i.e., shrinkage/swelling, which can take
place as a result of polymerisation and diffusion in the layer. The creation of (denser) polymer will in general lead to localised shrinkage.
Uncovered (unsealed) photopolymer layers can interact with the surrounding environment, e.g., absorbing water, which eventually leads
to swelling [24–26].  These changes can introduce surface variations and optical path variations: (i) grating fringe spacing, i.e., varying the
grating period with depth, and (ii) average index changes with depth. All these effects can lead to the Bragg replay conditions, i.e., the
electromagnetic coupling (volume diffraction strength) within the grating, varying with depth. Thus the incident light may be diffracted
with different efficiencies at different depths, and the Bragg condition is a function of the position within the layer.

In this paper a set of first-order coupled differential equations describing diffraction by non-uniform gratings are presented and solved.
We note however that dynamical non-latent effects are not taken into account [4].  In order to verify the model, in Part II results for
slanted volume gratings recorded in PVA/AA material layers are reported with off-Bragg angular scans measured. Best fits to the resulting
experimental data, using the non-uniform diffraction model, are performed and the grating parameters which give the best fits to these
data curves are identified. The quality of these fits is quantified using the root mean square error (RMSE).

The paper is organised as follows in Section 2 starting with Maxwell equations, the differential equations governing diffraction by
a thick lossless grating are derived. In Section 3 the effects of several types of grating non-uniformities are introduced in the model,
these include: (i) index modulation with depth, and (ii) variations of the on-Bragg replay condition with depth. In Section 4 approximate
analytical solutions are presented and compared in Section 5 with more physically exact numerical solutions and the diffraction effects of
the non-uniformities are discussed. A brief conclusion is presented in Section 6.

2. Derivation of coupled-wave equations

Maxell’s differential equations governing wave propagation in a lossy dielectric materials with no free charges are [1]:

∇ · (ε�E) = 0, (1a)

∇ · (� �H) = 0, (1b)

∇ × �E = −∂(� �H)
∂t

, (1c)

∇ × �H = � �E + ∂(ε�E)
∂t

, (1d)

where �H and �E are the vector of magnetic intensity and electric intensity, respectively, � is the material conductivity, which characterises
the optical absorption or loss of the material, � = �0 is the magnetic permeability for free space, (no ferromagnetic material: �r = 1) and
lastly the electric permittivity of material, ε = εrε0, where ε0 and εr are the permittivity of free space and the relative permittivity of the
particular medium respectively. Assuming a monochromatic field propagating through the medium

�E(x, y, z, t) = �E(x, y, z) exp[jω0t], (2a)

and

�H(x, y, z, t) = �H(x, y, z) exp[jω0t], (2b)

where ω = 2�f0 is the angular frequency and f0 is the frequency of the light. Substituting from Eq. (2a) into Eqs. (1a) and (1b) gives that

∇ × �H(x, y, z) = � �E(x, y, z) + jω0ε�E(x, y, z), (3a)

and

∇ × �E(x, y, z) = −jω0� �H(x, y, z) (3b)

Combining Eqs. (3a) and (3b), i.e., taking the curl of Eq. (3b) and substituting from Eq. (3a), we eliminate magnetic intensity and arrive at
the time independent vector wave equation

∇ × [∇ × �E(x, y, z)] + (jω0�� − ω2
0�ε0εr)�E(x, y, z) = 0 (4)

Noting that ∇ × (∇ × �E) = ∇(∇ · �E) − ∇2 �E, and assuming that the E-vector is perpendicular to the plane of interest, i.e., there is no material
variation in the y direction as illustrated in Fig. 1, Eq. (4) reduces to a scalar wave equation

∇2Ey(x, z) + ˇ2
(

1 − j
ε′

av
εav

)
Ey(x, z) = 0, (5)

where  ̌ = 2�nav/� is the angular frequency of the propagating wave in the material, nav = √
εav and � is the wavelength of the light in free

space. εav and ε′
av are the average real and imaginary parts of the material relative εr permittivity respectively, i.e., εr = εav − jε′

av. We note
that

ε′
av = �

ε0ω0
, (6a)
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