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a  b  s  t  r  a  c  t

Based  on  the  method  of computation  reference  channel  and  the  extended  Huygens–Fresnel  integral,
the  model  of  lens  ghost  imaging  with  fully  spatially  incoherent  linear  polarization  light  through  a  slant
turbulent  channel  has  derived.  The  model  shows  that  the resolution  ratio  of  ghost  imaging  decreases
as  the  power-law  exponent  of  non-Kolmogorov  turbulence  increasing  or the  object  location  departing
from  the source.  The  zenith  angle  of  channel  has  little  influence  to the  quality  of  the  ghost  imaging.
The  minimum  distinguishable  centre-separation  of  double  slit  decreases  as  the  power-law  exponent  of
non-Kolmogorov  turbulence  increasing.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Ghost imaging was first implemented with position-
momentum entangled photons [1]. The possibility of using
classic light for ghost imaging was first pointed out in Ref. [2] and
later several efforts have been made in order to compare quantum
and classic ghost imaging [3–5]. In Refs. [6–9], ghost imaging with
thermal and pseudo-thermal light are revealed. Recently, the ghost
imaging with thermal light in Kolmogorov atmospheric turbulence
and horizontal channel were studied based on the extended
Huygens–Fresnel integral [10,11]. Cheng et al. [10] demonstrated
that ghost imaging can provide imaging performance superior
to direct imaging through the atmosphere. On the experimental
side, ghost imaging with and without lenses through thin layers of
turbulence have been carried out [12,13]. Zhang et al. [14] based on
the computational ghost imaging arrangement with “virtual detec-
tor” and the extended Huygens–Fresnel integral, lensless ghost
imaging with fully spatially incoherent light radiation through a
slant non-Kolmogorov turbulence-channel has been studied. Cheng
et al. [15] studied lensless ghost imaging with Gaussian Schell-
mode pulse beam through a slant non-Kolmogorov turbulencet
atmosphere-channel, based on the optical coherent theory, the
extended Huygens–Fresnel integral and the approximation of the
form of spatial-temporal coherence function of the laser field in the
product of the spatial and temporal coherence function. In recent
quantum ghost imaging experiment [13] and theoretical analysis
[16], it was found that the effect of the thin layer turbulence can
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nevertheless be mitigated under certain conditions. It also has
been found that in the case with lenses the effect of the turbulence
is strongly dependent on the location of the turbulent layer, with
the effect becoming more prominent as the turbulence is moved
closer to the lens [16]. However, to the best of our knowledge, the
properties of the lens ghost imaging of slant path non-Kolmogorov
turbulence have not been taken into account.

In this paper, we theoretically analyse computational lens ghost
imaging with fully spatially incoherent light radiation and in non-
Kolmogorov atmospheric turbulence. In Section 2, the model of
lens ghost imaging in non-Kolmogorov slant turbulence-channel is
given and the calculation results are given in Section 3. We  conclude
our findings in Section 4.

2. Lens ghost imaging in the slant non-Kolmogorov
turbulence atmosphere

Let us consider the computational ghost imaging scheme [17]
shown in Fig. 1. In this lens ghost imaging scheme, the test channel
is a slant turbulence-channel and the reference channel is a com-
putation simulation channel. In the test channel, a fully spatially
incoherent source Es propagates through atmospheric turbulence
channels. There is an unknown object O(�) located in this chan-
nel, and the bucket detector Dt is used in the channel. The distance
between the source and the detector, the source and the object, the
object and the lens, the lens and the detector are d0 (d1 + d2), d1,
and d3 (d3 = f) respectively. In the reference channel, the model of
computational field is constituted by a reference imaging system
in which the source field Es is same as test channel and is imaged
by a lens and turbulence free system. The propagation distance
from the source to the reference imaging lens is d0 = d1 + d2 and
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Fig. 1. Lens ghost-imaging in a slant atmospheric turbulence system.

the focal length of reference imaging lens also is f. The object image
is obtained by correlating the intensity measured by the Dt bucket
detector at plane xt with the calculated field for filed propagation
from source plane to spatial resolving “virtual” detector Dco at xco

plane.
According to the extended Huygens–Fresnel integral [16], the

field E(�) of linear polarization source field Es(x) propagation from
source to object plane can be represented as

E(�) = 1√
i�d1

∫
dx1Es(x1) exp

[
ik

2d1
(x1 − �)2 +  1(x1, �)

]
(1)

where  1(x, �) is the random part of a spherical wave propagating
through the atmosphere from the source plane to the object plane.

The output field of E(�) propagates through object is given by

E′(�) = O(�)√
i�d1

∫
dx1Es(x1) exp

[
ik

2d1
(x1 − �)2 +  1(x1, �)

]
(2)

where O(�) denotes the transmission function of the object.
The field at the lens plane � can be obtained as

E(�) = −i
�
√
d1d2

∫∫
dx1d�Es(x1) exp

[
ik

2d1
(x1 − �)2 +  1(x1, �)

]

× O(�) exp
[
ik

2d2
(� − �)2 +  2(�, �)

]
(3)

where  1(�, �) is the random part of a spherical wave propagating
through the atmosphere from the object plane to the lens plane.

Appling the Fourier-transform of lens, the field E(xt) in the
bucket detector Dt can be written as

E(xt) = 1

i�
√
i�d1d2f

∫∫∫
dx1d�d�Es(x1)

× exp
[
ik

2d1
(x1 − �)2 +  1(x1, �)

]
× O(�)

× exp
[
ik

2d2
(� − �)2 − i

kxt�

f
+   2(�, �)

]
(4)

Following the Huygens–Fresnel integral, the calculated field of
reference channel, which is connected to the source field and prop-
agating in turbulent free channel, is given by

E(xco) = 1√
i�f

∫
dx2Es(x2) exp

(
− ikx2xco

f

)
(5)

Based on the optical coherent theory, in the one dimensional
case, the second-order degree of coherence containing the imaging
of the object is given by [17]

G(xt, xco) = 〈I(xt)I(xco)〉 − 〈I(xt)〉〈I(xco)〉 (6)

where I(xt) and I(xco) denote the intensities in the test channel and
reference channel, respectively. The brackets denote an average
over all realizations of the field.

Assuming the turbulence fluctuations in the channel d1 and d2
are statistical independence, the intensity correlation can be rep-
resented as〈

I(xt)I(xco)
〉

= 1
�4d1d2f 2

∫∫ ∫∫ ∫∫ ∫∫
O(v)O∗(v′)dx1dx′

1dx2dx′
2d�d�′d�d�′〈exp[ 1(x1, �) +  ∗

1(x′
1, �′)]〉〈Es(x1)E∗

s (x
′
1)Es(x2)E∗

s (x
′
2)〉

exp
{
ik

2d1
[(� − x1)2 − (�′ − x′

1)2]
}

〈exp[ 2(�, �) +  ∗
2(�′, �′)]〉 exp

{
ik

2d2
[(� − �)2 − (�′ − �′)2] − i

kxt
f

[� − �′]
}

exp
[
− ikxco

f
(x2 − x′)

]
(7)

The last term in Eq. (6) can be expressed as

〈I(xt)〉〈I(xco)〉 = 1
�4d1d2f 2

∫∫ ∫∫ ∫∫ ∫∫
O(v)O∗(v′)dx1dx′

1dx2dx′
2d�d�′d�d�′〈exp[ 1(x1, �) +  ∗

1(x′
1, �′)]〉〈exp[ 2(�, �)

+  ∗
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s (x
′
1)〉〈Es(x2)E∗
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′
2)〉 exp

{
ik

2d1
[(� − x1)2 − (�′ − x′

1)2]
}

exp
[
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2)
]

exp
{
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f

[� − �′]
}

(8)

The statistical average 〈exp[ 1(x, �) +  1
∗(x′, �′)]〉 coursed by

the turbulence fluctuations can be described approximately by [18]

〈exp[ 1(x, �) +  1
∗(x′, �′)]〉 = exp

[
−1

2
D (x − x′, � − �′; z)

]
(9)

where D (x − x′, � − �′; z) is the structure function of the turbulent
fluctuations.

We assume the source obeys the Gaussian statistics with a zero-
average mean and can be represented as

〈Es(x1)E∗
s (x

′
1)Es(x2)E∗

s (x
′
2)〉 = 〈Es(x1)E∗

s (x
′
1)〉〈Es(x2)E∗

s (x
′
2)〉

+ 〈Es(x1)E∗
s (x

′
2)〉〈Es(x2)E∗

s (x
′
1)〉 (10)

The two-point correlation functions 〈Es(v)E∗
s (x

′
2)〉 of fully spa-

tially incoherent beams can be expressed

〈Es(x1)E∗
s (x

′
2)〉 = I0ı(x1 − x′

2) (11)

where I0 is a constant, and ı(x1 − x′
2) is Dirac delta function.
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