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The  approximate  analytical  solutions  to  the  threshold  pump  power  and  output  laser  power  of Yb3+-doped
double-clad  fiber  lasers  have  been  deduced  based  on  the  rate  equations  with  the  scattering  losses  of  pump
and laser  signal.  In  the  rate  equations,  the  relation  between  the  attenuation  of  the  pump  light  and  the
population  density  on  the  upper  level  is  considered.  The  characteristics  of  Yb3+-doped  double-clad  fiber
lasers  have  been  investigated.
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1. Introduction

In recent years, rare earth-doped fiber lasers have drawn con-
siderable attentions and made large progress experimentally [1–4]
and theoretically [5–14]. Among these fiber lasers double-clad fiber
lasers (DCFLs) have been actively studied. It is because of their char-
acteristics including high output power, high conversion efficiency,
easy heat extraction, excellent beam quality, large ration of surface
area to volume, etc. Based on the rate equations for linear-cavity
DCFL, Kelson and Hardy [7,10] have deduced the approximate
analytic expressions of output power, lasing threshold, slope effi-
ciency, the optimal fiber length and reflectivity of output mirror
without the scattering loss. Xiao et al. [8] have deduced the approx-
imate analytic solutions with scattering loss under the condition
of the laser being strongly pumped, and shown three different
pump modes. Kim et al. [9] and Peng et al. [11] have respectively
investigated the DCFLs by numerical simulations based on the rate
equations. However, one usually needs to guess the set of initial val-
ues in the numerical simulations, the results will be unstable if the
initial values are not properly chosen. Luo et al. [13] and Liao et al.
[14] have deduced the approximate analytic solution to the Yb3+-
doped DCFL using different algorithms, respectively. However, in
these two works, the attenuation coefficient of the pump light along
the fiber has been approximately regarded as a constant, that is the
attenuation of the pump light have no relation with the change of
the population density on the upper level. In this paper, it is con-
sidered that the attenuation coefficient of the pump light depends
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on the population density of the upper level. The characteristics of
the DCFL have been investigated based on the rate equations with
scattering losses.

2. Model and rate equations

The schematic diagram of a DCFL with forward pumping is
shown in Fig. 1. The laser cavity is formed by a high reflectiv-
ity mirror (M1) and a lower feedback mirror (M2). Generally, the
reflectivity of M1 is close to 1, and that of M2 is lower. When the
laser is running in the steady state, there are forward signal laser
S+(z) propagating along the fiber (from z = 0 to z = L, i.e. positive z-
direction) and backward signal laser S−(z) propagating in opposite
direction (from z = L to z = 0, i.e. negative z-direction). The behavior
of a linear-cavity Yb3+-doped DCFL as shown in Fig. 1 running in
the steady state is governed by rate equations [7,8]

dF(z)
dz

= �p[�epN2(z) − �apN1(z)]F(z) − ˛pF(z) (1)

±dS±(z)
dz

= �s[�esN2(z) − �asN1(z)]S±(z) − ˛sS
±(z) (2)

N2(z)
�

= u[�apN1(z) − �epN2(z)]F(z) + u[�asN1(z) − �esN2(z)]

× [S+(z) + S−(z)] (3)

N = N1(z) + N2(z) (4)

where F(z) stands for the pump photon density (with the travel-
ing direction of positive z-direction when the fiber laser is one-side
pumped), S±(z) represent the laser photon densities propagating
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Fig. 1. Schematic diagram of Yb3+-doped DCFL.

along the positive and negative z-directions, respectively, N1(z) and
N2(z) are the population densities on the upper and lower energy
level, respectively. N is the dopant concentration, � is the relaxation
time of an atom from the upper level to the lower level, u is the light
speed inside the fiber, �a and �e are the absorption and emission
cross-sections, respectively, � is the filling factor,  ̨ is the scattering
loss coefficient, and the subscripts “s” and “p” indicate the laser and
pump waves, respectively. From (1), it can be seen that the attenu-
ation of the pump light depends on the variation of the population
density of the upper level (N2). The boundary conditions are

S+(0) = S−(0)R1 (5)

S−(L) = S+(L)R2 (6)

where L is the fiber length, R1 and R2 are the reflectivities of the
laser mirrors of M1 and M2, respectively. From (2) it can be verified
the S+(z)S−(z) is independent on z, given that

S+(z)S−(z) = C2 (7)

where C is a constant. Thus (5) and (6) may  be cast as

S+(0) = Cr1 S+(L) = C

r2
(8)

S−(0) = C

r1
S−(L) = Cr2 (9)

where r1 and r2 represent R1
1/2 and R2

1/2, respectively. From (2)
and (4), one has

ln
S+(L)
S+(0)

= �s(�as + �es)

∫ L

0

N2dz − �s�asNL − ˛sL (10)

Taking into consideration of (8) and (9), we have

ln
1

r1r2
= [�s(�as + �es)� − �s�asN − ˛s]L (11)

where

� =
∫ L

0
N2dz

L
(12)

Thus, from (11) and (12), one has

� = (1/L)  ln(1/r1r2) + ˛s + �s�asN

�s(�as + �es)
(13)

� represents the averaged population density on the upper level.
It can be seen that � has no relation with the pump power. �
depends on the parameters on the right-hand side of (13).

Considering (1) and (12), it can be deduced that

F(L) = F(0) exp{[�p(�ap + �ep)� − �p�apN − ˛p]L} (14)

F(L) denotes the pump photon density at z = L. F(0) denotes the
pump photon density at z = 0. (14) indicates that the input pump

photon density decreases along the fiber length. At z = 0, laser pho-
ton density can be expressed as S(0) = Cr1 + C/r1. At z = L, laser photon
density can be expressed as S(L) = Cr2 + C/r2. Generally, r1 > r2, it can
be seen that S(L) > S(0), that is the pump photon density decreases
while the laser photon density increases along the fiber length. It is
known that the increase of the laser photon density results from the
consuming of the population density of the upper level. Then, it is
verified that N2(z) will decrease from z = 0 to z = L, i.e. N2(0) > N2(L).

2.1. Threshold conditions

Under threshold condition, the laser photon density can be
neglected, and (3) yields

N2(z)
�

= u[�apN1(z) − �epN2(z)]F(z) (15)

From (1) and (3), one has

N2(z)
u�

= −dF(z)
�pdz

− ˛pF(z)
�p

(16)

Direct integration from 0 to L on (16) leads to∫ L

0
N2(z)dz

u�
=  − 1

�p

∫ L

0

dF(z) − ˛p

�p

∫ L

0

F(z)dz (17)

Because the value of F(z) decreases monotonously along the fiber
length, here, an approximation is used as follows∫ L

0
F(z)dz

L
≈ F(0) + F(L)

2
(18)

The left-hand side of (18) indicates the averaged pump photon
density along the whole fiber length. Inserting (18) into (17) and
considering (12) and (14), one can deduce that

F(0)th = �L

u�{−((2  + ˛pL)/2�p) exp{[�p(�ap + �ep)� − �p�apN − ˛p]L} + ((2 − ˛pL)/2�p)} (19)

Here, F(0)th stands for the threshold pump photon density. The rela-
tion between the threshold pump photon density and its related
power can be expressed as

Pth = h�pAuF(0)th

�p
(20)

where �p is the frequency of the pump and A is the cross-sectional
area of the fiber core.

2.2. Strongly pumped laser

When the pump power is higher than the threshold, the laser
photon density cannot be neglected. Considering (1)–(3), one has

N2(z)
u�

= −dF(z)
�pdz

− ˛pF(z)
�p

− ˛sS+(z)
�s

− dS+(z)
�sdz

− ˛sS−(z)
�s

+ dS−(z)
�sdz

(21)

From (21), one has∫ L

0
N2(z)dz

u�
=  −

∫ L

0
dF(z)

�p
−

˛p

∫ L

0
F(z)dz

�p
−

˛s

∫ L

0
S+(z)dz

�s

−
∫ L

0
dS+(z)

�s
−

˛s

∫ L

0
S−(z)dz

�s
+

∫ L

0
dS−(z)

�s
(22)

It is known that the value of S+(z) (or S−(z)) increases (or decreases)
monotonously from z = 0 to z = L, an approximation is used as fol-
lows∫ L

0
S±(z)dz

L
≈ S±(0) + S±(L)

2
(23)
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