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a  b  s  t  r  a  c  t

The  phase  aberration  caused  by  thermal  deformations  in a high  power  inner  optical  system  is simulated
and the wavefront  pre-compensation  for  correcting  the  aberration  is  studied  experimentally.  Choosing
Strehl  ratio  (SR)  and  the  root-mean-square  (RMS)  of  distorted  phase  as  the  characteristic  parameters,  the
beam  quality  of  outgoing  laser  is  calculated  when  the  wavefront  of  incident  laser  is  compensated.  Based
on the  computed  results,  the  laboratory  experiment  is designed  to  model  the  thermal  deformations
aberration  and  the  correction  process  by  using  two  Liquid  Crystal  on  Silicon  Spatial  Light  Modulators
(LCoS-SLM).  The  negative  influence  of  astigmatism  and  defocusing  on laser  beam  quality  in  far  field
is  obvious  and  the  astigmatism  induces  the  non-axisymmetrical  divergence  of  intensity  distribution.
After  wavefront  pre-compensation  the  power  in the  bucket  (PIB)  value  of outgoing  laser  beam  is close
to  the  flat  wavefront  laser  source.  Both  simulated  and  experimental  results  indicate  that  the method
of wavefront  pre-compensation  can  greatly  correct  the  aberrations  caused  from  thermal  deformation,
and the  laboratory  experiment  is  a  feasible  method  to  modeling  the  inner  optical  system  with  phase
aberration.

© 2012 Elsevier GmbH. All rights reserved.

1. Instruction

The phase aberrations caused by thermal deformations is one
of the main limitations in a beam control system [1,2]. It would
significantly reduce the effectiveness of high-power lasers system
as devices for beaming power over long paths through the atmo-
sphere and reduce the intensity at the target at power level. In
order to counteract the phase aberrations, the wavefront of outgo-
ing laser must be compensated. In order to approach this problem,
we place conjugation wavefront compensation on the incident laser
to minimize the phase aberrations of emitted laser. This method
is analyzed base on the principle of phase conjugation and the
schematic diagram of this method is shown in Fig. 1. The thermal
deformations aberration of mirrors can be detected by a wave-
front sensor at the exit of the inner optical system. Based on the
results of sensor, the controller generates signals to the corrector
which applies the phase conjugate on the laser entering the optical
system.

To reduce the amounts of material, time and expense, the simu-
lation and laboratory experiment of wavefront pre-compensation
is necessary and the result can be studied to design the phase cor-
rection system. Firstly, the thermal deformations of a Si mirror
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and correlative phase shift in a simple case have been simulated.
Secondly, based on the numerical computation of phase shift, the
complex amplitude distribution of the outgoing laser is calculated
with the space ray method of geometrical optics and the light
diffraction theory. Finally, the laboratory experiment is designed
to model the propagation of a high power laser beam on simple
condition that the beam control system just has one reflector.

2. Calculation of phase shift

In the case that the transverse intensity distribution I(r, �) of a
laser beam irradiating on a Si mirror of radius r0 and thickness d,
and considering the heat convection between the environment and
the mirror, the temperature distribution T(r, �, z; t) is given by the
following axisymmetric thermal conduction equation [5]:

∇2T(r, �, z; t) + q̇
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The boundary conditions and initial condition are [5]
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Fig. 1. Schematic diagram of wavefront pre-compensation for an inner optical sys-
tem.

T(r, �, z; t)|t=0 = T∞ (5)

where,  ̨ = �/�C is the thermal diffusivity, � is the thermal conduc-
tivity, � is the density of the medium, C is the special heat, q̇  is the
heat generation rate per unit volume, h is the heat transfer coef-
ficient, T∞ = 293 K is the ambient temperature. Assuming that all
the energy of laser absorbed by the thin coatings changes to heat
energy, the heat flux load on the surface (z = d) is considered as the
only heat source and the heat generation inside q̇ is ignored, � is
the absorptivity of coatings.

When the continuous wave laser irradiates on a Si mirror with
high-reflectivity coatings, because the thickness of coatings (∼�)
is far smaller than that of substrate, the deformations of coatings
can be ignored. The thermal deformations of a high reflectivity cir-
cle mirror can be calculated by thermo-elastic equations of the
substrate material [4],

∇2ur − ur
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When the side of a mirror is constrained, the boundary condition
is

ur |r=r0 = uz |r=r0 = 0 (8)

where, ur, uz is the radial and axial thermal deformations, respec-
tively, � is the Poisson’s ratio, ˛l is the linear thermal expansion
coefficient, ε is the thermal strain.

After reflection from a mirror, because of the thermal defor-
mation the phase distribution of laser beam changes to (shown in
Fig. 2)


�  = k · 2uz · cos � (9)

Fig. 2. Illustration of a high-reflectivity mirror irradiated by laser and the calcu-
lation of phase shifts 
�  caused by thermal deformations. uz is the axial thermal
deformations on the surface, and � is the angle between the incident ray and normal
line.

where, 
�  is the phase shift. So the complex amplitude distribution
of reflecting laser Ũr(x, y) is

Ũr(x, y) = Ũi(x, y) exp(−i
�) (10)

where, k = 2�/�, � is the wavelength, uz is the axial thermal defor-
mations on the surface, � is the angle between the incident ray
and normal line, Ũi(x, y) is the complex amplitude distribution of
incident laser.

3. Beam propagation in the inner optical system

As mentioned in Section 1, for the purpose of minimize the phase
aberrations, we  place the conjugation wavefront compensation on
the incident laser beam. Then the complex amplitude distribution
of incident laser Ũ ′

0(x, y) become to

Ũ ′
0(x, y) = Ũ0(x, y)e−iϕ′(x,y) (11)

where, ϕ′(x,y) is the phase aberrations, Ũ0(x, y) is the amplitude
distribution of original incident laser beam. After the conjugation
wavefront pre-compensation the incident laser is not a plane wave
again, so the characteristic of outgoing laser is changed. Otherwise,
the difference of laser field distribution on each reflector is consid-
ered, so the phase aberrations of the emitted laser ϕ′(x,y) must be
calculated by using both the space ray method of geometrical optics
and light diffraction theory [6,7] connected with the calculation of
thermal deformations.

The laser field distribution on the reflector can be calculated
with the Fresnel diffraction integral by FFT (Fast Fourier Transform)
method. The Fresnel diffraction integral is [7]

Ũ(x, y) =
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Direct integrating as a convolution form:
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where, d is the distance of beam propagation.
Introducing the Fourier transform and inverse Fourier transform

into Eq. (13) yields the following solution:

Ũ(x, y) = F−1{F{Ũ0(x, y)}HF (fx, fy)} (14)

where, fk = (k/�d)(i = x, y), and HF(fx, fy) is the Fresnel diffraction
transfer function [7]

HF (fx, fy) = F{h(x, y)} = exp

{
ikd

[
1 − �2

2
(f 2 + f 2)

]}
(15)

Beam propagation between adjacent mirrors in a optical system
can be calculated by Eqs. (14) and (15) (dn is the distance between
nth mirror and (n + 1)th mirror):

Ũi
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In a beam control system with many reflectors the complex
amplitude distribution of emitted laser can be described as

Ũe(x, y) = Ue(x, y)eiϕ′(x,y) (17)
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