Optik 124 (2013) 901-905

journal homepage: www.elsevier.de/ijleo

Contents lists available at SciVerse ScienceDirect

Optik

Research on parameters estimation of sea clutter in data preprocessing

Huizhu Ma*, Chengxiang Li

Information and Communication Engineering College, Harbin Engineering University, Harbin, China

ARTICLE INFO ABSTRACT

Article history:
Received 27 September 2011
Accepted 3 February 2012

In the area of radar image analysis and small target detection in the sea, it is very important to study
the characterization of sea clutter. It is modeled as a stochastic process traditionally. Recent research
shows that it has chaotic characterization. The sea clutter parameter estimation plays an important role

in the radar image processing. To adapt to different sea conditions, both “high sea state data” and “low
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sea state data” are used in this paper. The paper presents the detailed parameters estimation methods
and procedure, which laid the foundation for further image denoising and analysis.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Sea clutter is the result of radar backscatter from a sea surface
which interferes in performance of targets detection seriously in
sea clutter. Therefore, it is important to study sea clutter for radar
system design, radar image analysis and small targets detection.
Traditionally, sea clutter is modeled as a stochastic process. Some
successful models, such as Rayleigh, Weibull, and K-distribution,
have been widely used. The technology of detecting small targets
in sea clutter is based on the statistical hypothesis testing theory.
It is very difficult to detect a small target with low false alarm
probability when sea clutter is very strong.

In recent years, many researchers find that sea clutter is not
an entire random signal through the further study. It contains cer-
tain factors with a lot of typical characteristics of chaos [1-3]. Sea
clutter is considered as chaos for its chaotic characterizations as
follows: (1) sea clutter is bounded. (2) The largest Lyapunov expo-
nent of sea clutter is positive. (3) Sea clutter has a finite correlation
dimension. (4) Sea clutter is locally predictable; most importantly,
the dynamics of sea clutter can be reconstructed by a deterministic
model. Compared with classical statistical model, chaotic model
[4,5] combines the sea clutter mathematical model and physical
property more effectively which can describe the sea clutter in
smaller degrees of freedom and provide a new idea to the dynamic
system. The performance of the detection would be improved [6,7].

The paper is organized as follows. We start with an introduc-
tion of reconstruction of dynamics from a time series [3] in Section
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2, which contains the method to estimate the time delay and the
embedding dimension. Then correlation dimension and Lyapunov
exponent [4] of the time series are discussed. In Section 3, we intro-
duce the database used for the study and results are presented using
real-life radar data. Some conclusions are given in Section 4.

2. Chaotic characterization of sea clutter

To apply chaos-based method to radar signals processing, we
must demonstrate that sea clutter is chaotic first. We will introduce
some concepts of the chaotic invariants of sea clutter, such as the
correlation dimension and the maximum Lyapunov exponent. First,
we use phase space reconstruction to illustrate the trajectories of
the sea clutter. Second, a standard correlation dimension analysis of
the data is performed. Third, the method to calculate the maximum
Lyapunov exponent is presented.

2.1. Phase-space reconstruction

Information about the dynamics of sea clutter is particularly
important in radar signal processing. Phase-space reconstruction
is the first step to study the chaotic characterization of sea clutter,
which plays an important role in the calculation of chaotic invari-
ants of sea clutter. First we estimate the embedding dimension m
and the time delay t based on Takens’ embedding theorem, and
then reconstruct the phase space of the data using the parameter
mand .

Takens’ embedding theorem is an existence theorem, which
provides the mathematical basis of the dynamic reconstruction
problem. It says that if a strange attractor of dimension is in a
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sufficient embedding dimension m > 2D+ 1 (D is correlation
dimension), there is a nonlinear function F as follows:

y(t+mt) = F(x(t), x(t+71), ..., x(t +(m —1)7)) (1)

Here we will reconstruct the phase space by a time series
(x(t); t=1,2,...,N}. We assume M is an m-dimensional com-
pact manifold. According to Takens’ embedding theory, the map
@: M — R™ defines a corresponding trajectory &(i):

D(i) = {x(i), x(i+ 1), ..., x(i+m—1)} (2)

A chaotic dynamical system is described by the difference equa-
tion on M:

y(t+1) = @(y(t)) 3)
where ¢ is a nonlinear function. Thus we have

D(i+1) = @(P(i)) (4)
equivalently,

x(i+1),x(i+2), ..., x(i+m)} = ofx(i), x(i+ 1), ...,
X(i+m—1) (5)

Each point of the left-hand side is determined by the compo-
nents of the right-hand side. So we define a function F to describe
the equation:

x(i+m)=F{x(i), x(i+ 1), ..., x(i+m—1)} (6)
For a time series, we rewrite the equation as follows:
x(t +mt) = {x(t), x(t + ), ..., x(t +(m—1)1)} (7)

where 7 is the time delay, m is the embedding dimension.

There are two parameters for the phase-space reconstruction:
the time delay t and the embedding dimension m. The size of T
and m is very important to the quality of the phase-space recon-
struction. The method of autocorrelation is used to estimate the
time delay and GP method [8] is used to estimate the embedding
dimension.

2.1.1. Time delay

The estimation of the time delay is important to the perfor-
mance of the phase-space reconstruction. If T is too small, the vector
of delay is too close to serve as independent coordinates. On the
other hand, if 7 is too large, the vector of delay is independent and
loses the connection with each other. So it is necessary to choose
an optimum to compromise these situations between redundancy
and irrelevance. In practice, the method of autocorrelation function
and mutual information is usually used to estimate the time delay.
Because of the simplicity of autocorrelation function and consis-
tency with the dimension estimator, the former method is used
here.

For a continuous variable x(t), the autocorrelation function is
given as follows:

1 (72

C(7) = lim = X(t)x(t + T)dt (8)
ToooT _1/2

For a time series {x(t);t=1, 2, ..., N}, the autocorrelation

function is given as follows:
1 N-1
Ra(7) = 5 > _X(OX(E+7) 9
t=0

A suitable t is chosen as the first zero-crossing point of the
autocorrelation function.

2.1.2. Minimum embedding dimension

Embedding dimension is another important parameter of
phase-space reconstruction. The geometry of dynamical system
will exist naturally in an uncompacted or unfolded state in a partic-
ular dimension known as the embedding dimension. In dimensions
below m, the dynamical system is compacted in an unnatural way
and its geometry is said to be folded. Takens’ embedding theorem
showed m > 2D + 1 is the sufficient condition to the embedding
dimension. We should choose an optimal value of m in the phase-
space reconstruction. If m is too small, the geometry will become
folded. The shape of the reconstructed attractor and the original
attractor is completely different. In the contrast, if m is chosen too
large, it will increase the complexity of computation and the effect
of noise will also be amplified.

2.2. Correlation dimension

Attractor dimension is a very important concept in analysis of
nonlinear dynamic system, which can serve as a means of illuminat-
ing the complexity of an attractor structure. Correlation dimension
is considered to be the most popular method used to perform the
estimation of an attractor dimension from practical time series.
The correlation dimension with large computing can be used as
an effective criterion to justify the presence of chaos. For a system
to be chaotic, the correlation dimension must be positive.

For any set of n points in an m-dimensional space, the definition
of Grassberger and Procaccia for the correlation dimension is given
by

b=t {5 } 10
wotim {5 o

where s is the total number of pairs of points which have a distance
between them that is less than distance r.

On the basis of the definition, Grassberger and Procaccia develop
an algorithm to estimate the correlation dimension. This method,
which is named GP method, will be introduced as follows:

Given a time series {x(t);t =1, 2, ..., N}, we reconstruct a m-
dimensional portrait. By the use of Takens’ embedding theorem,
we can get a group of vectors:

X(t) = x(t)mx(t + 1), ..., x(t +(m—-1)7) (12)

where t is the time delay, m is the embedding dimension, M =
N — (m — 1)t is the number of vector points in the reconstruction
phase-space.

The correlation integral is defined as:

M
Colr) = 23 67 ~ IX() ~ XG)] (13)

ij=1
where r is a positive number, 6 is the Heaviside function:

x<0

00 = {0’ (14)

1, x>0

where ||X(i) — X(j)|| is the Euclidean norm, which provides a con-
venient method to calculate the distance between two points.

Correlation integral C,(r) describes the probability of which the
distance between the two points in attractor is less than r. When
r—0,

limCn(r) oc 1P (15)

r—0
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