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Abstract

The split-step Fourier method is used to study the energy switching characteristics of fiber nonlinear directional
couplers with the third-order dispersion. The effects of the third-order dispersion increases with the third-order
dispersion coefficient and input power and result in pulse shift and energy decreases. Adding high-order nonlinear can
partly overcomes these effects.
r 2006 Elsevier GmbH. All rights reserved.
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Since Jensen first depicted the coupling character of
fiber nonlinear directional couplers [1], it arise people’s
great researching interest [2–7]. The advantage of using
solitons for all-optical switching in nonlinear interfe-
rometers has been discussed by Doran and Wood [8].
Trillo et al. [9] further pointed out that the switching
efficiency double when soliton inputs were used in fiber
nonlinear directional couplers, compared with quasi-cw
pulses were used. In Trillo’s numerical calculation, the
propagation of pulses in a nonlinear dual-core fiber
directional coupler was described in terms of two
linearly coupled nonlinear Schrödinger equations
(NLSEs), in which the high-order dispersion and non-
linear effects were ignored. However, if the pulses are
too narrow or the high-order dispersion and nonlinear
of the material is too large, the NLSEs must include the
high-order term. In this paper, we consider the effect of
third-order dispersion on soliton switching in fiber
nonlinear directional couplers.

The nonlinear-coupled equations including the effect
of third-order dispersion for a two-core nonlinear
coupler in the soliton units can be expressed as [8,9]
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where u and v are the slowly varying envelope amplitude
of the modal field in the first and second waveguides.
s ¼ b3/6 and b3 is the third-order dispersion coefficient.
K is the linear coupling coefficient between the two
waveguides. In general case, the above equations cannot
be solved analytically, so the numerical method is
applied. The most and widely used numerical method
solving NLSE is the split-step Fourier method (SSFM)
because of its simplicity, flexibility, good accuracy, and
relatively modest computing cost [10]. The SSFM
assumes that the propagation of the optical pulses from
z to z+h is carried out in two steps, where h is a small
distance. In the first step from z to z+h/2, nonlinearlity
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acts alone, while in the second step from z+h/2 to z+h,
only the linearity terms act alone. Hence, (1) can spilt
into a linear and a nonlinear part. Mathematically
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In the first step, uj j2 is regarded as invariable. Eq. (3)
can be exactly solved and the iterative scheme can be
expressed as

uðzþ h=2; tÞ ¼ uðz; tÞ expðiu2hÞ. (5)

Taking the Fourier transformation of (5), we have

Uðo; zþ h=2Þ ¼ F ½uðz; tÞ expði uj j2hÞ�, (6)

where U(o, z+h/2) is the Fourier transformation of
u(z+h/2, t). For the second step, we take the Fourier
transformation of (10) in the same way and obtain

Uðo; zþ hÞ ¼ Uðo; zþ h=2Þ exp½ih=2ð�o2 � 2so3Þ�

þ iKV ðo; zþ h=2Þh. ð7Þ

The same process is simultaneously carried out with
Eq. (2). After taking (6) into (7) and carrying out the
reversal Fourier transformation, we can implement the
numerical analysis on the pulse propagation in the two
waveguides.

We suppose that the initial conditions

uðz ¼ 0; tÞ ¼ A sec hðtÞ; vðz ¼ 0; tÞ ¼ 0. (8)

According to [9], the half-beat length of the linear
coupler is given by L ¼ p/2K. Then, using As ¼ 2

ffiffiffiffi

K
p

to
obtain those values for which the peak input power
equals the cw switching power. In order to verify our
program, we give K ¼ 1 and A ¼ 1 for Eq. (8), and
consider the case without third-order dispersion (s ¼ 0)
in Eqs. (1) and (2). Fig. 1 shows the result, which is
consistent with [9]. Next, we study the energy switching
characteristics that can be achieved (by the method of
[9]) by using our solitonlike input pulses with different s,
for the case of K ¼ 1/4 and L ¼ 2p. In this case, the cw
switching power Ps ¼ As

2
¼ 1. The numerical results are

shown in Fig. 2. As can been seen, the transmissions
have same steep curves in the range of 1oPo1.5 for all

values of s. Then P ¼ 1 becomes the threshold power of
the switching. It is clear that the third-order dispersion
with small s hardly influence the averaged transmission
value, especially for the range of Po1.5. Then the
switching function still takes effect. However, when the
value of s increases, the averaged transmission value
quickly decreases with the value of P increasing in the
range of P41.5. To the worst, the averaged transmis-
sion at P ¼ 3 is even less than 0.5, which basically
disable the switching function. Fig. 3 shows the final
wave shapes through the directional couplers on the
conditions of P ¼ 1, 1.5 and 3, corresponding to s ¼ 0,
0.1, 0.14 and 0.18. For the case of P ¼ 1 and 1.5,
whatever the values of s are, the position or intensity of
the pulse in two fibers changes little. But when P ¼ 3,
with the value of s increasing, not only the pulse
intensity for u decreases, but also the position of the
pulse for u results in shift in the right direction, which
means that a time delay occurs when the u pulse goes
through coupler. In order to solve the question that the
switching function of directional couplers is disabled in
the cases of the large s and P, we try to use fibers
adulterated by high nonlinear material. On the condi-
tion of large input power, the fibers will result in high-
order nonlinear, thus the Eqs. (1) and (2) must include
high-order nonlinear term, which can be rewritten by
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where e is the fifth-order nonlinear coefficient. These
equations are called as the third–fifth order NLSE’s [11].
SSFM method can be also used to solve Eqs. (9) and
(10) and study the energy switching characteristics.
Fig. 4 shows the result for different values of e and s.
From Fig. 4, we find that the averaged transmission
hardly decreases after P41.5 in spite of s ¼ 0.18, which
is attributed to that the fifth order nonlinear term partly
overcomes the third-order dispersion. Fig. 5 depicts the
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Fig. 1. Evolution of pulses in the fiber nonlinear directional

coupler for soliton like input with A2
¼ 1 and K ¼ 1.

Fig. 2. Averaged transmission versus input peak power

P ¼ A2 for different values of s.
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