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Abstract

The scalar theory is described for calculation of the point-spread function (PSF) of optical systems with a large
numerical aperture. In our work, we introduced an analytic description of this phenomenon and we derived exact and
simple approximate relations that enable to calculate the PSF for a diffraction-limited optical system with a finite value
of numerical aperture. The derived relations convert to classical relations that are commonly described in literature for
the case that the value of numerical aperture tends to zero. Our derived relation is a generalization of the classical
relation for calculation of PSF in the case of a large numerical aperture.
r 2006 Elsevier GmbH. All rights reserved.
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1. Introduction

The point-spread function (PSF) is a basic character-
istic of imaging properties of optical systems. It is closely
related to the resolving power and the optical transfer
function of an optical system. In optical literature [1–3],
the PSF is given only for the case of optical systems with
a very small value of numerical aperture. These relations
are accurate enough for a wide range of optical systems
that one can meet in practice, because the value of
numerical aperture for many optical systems (telescopes,
camera lenses, etc.) is relatively small. For example, the
camera lens with the f-number c ¼ 1.4 has numerical
aperture NA ¼ 1/2c ¼ 0.36. However, the classical
relation for the PSF calculation is not accurate enough
for optical systems with a large value of numerical

aperture. A typical representative of optical systems
with the large numerical aperture is a microscope
objective.

Diffraction in optical systems with a large numerical
aperture is described in Refs. [4–14]. Refs. [15–21] deal
with the application of Zernike polynomials for solving
diffraction problems in the case of optical systems with
aberrations.

The aim of this work is to show the effect of the
numerical aperture value on the shape of the PSF of an
optical system using the scalar wave theory. Further-
more, it is also derived a simple analytical expression for
calculation of the PSF for the case of diffraction limited
(aberration free) optical system with the circular exit
pupil and with the numerical aperture of finite value.

2. Diffraction integral

Let us consider a scalar wave field. The applicability
of the scalar analysis is limited to optical systems with a
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numerical aperture value of the order of NAo0.7.
Beyond these values polarization effects become sig-
nificant [6–11]. As it is well-known from the theory of
electromagnetic field [1–6], the amplitude of the wave
field U(P) in an arbitrary point P of area bounded by the
surface S can be determined, if the amplitude of the
wave field U(M) on this surface is known . It can be
calculated from the diffraction integral

UðPÞ ¼ �
i

l

ZZ
S

UðMÞ
eikr

r
cosðn; rÞdS, (1)

where M is the point lying on the surface S, r is the
vector given by points P and M, r ¼ rk k is the distance
between points P and M, cos(n,r) is the cosine of the
angle between the normal n to surface S and the position
vector r, k ¼ 2p=l is the wavelength of light in given
optical medium.

Let us now calculate the integral (1) for the case of an
optical system with aberrations. The surface S is
identical with the wave-front that exits the optical
system and the point M(x, y, z) is an arbitrary point
lying on the wave-front S. The point P(xP, yP, zP), which
lies in the image plane of the optical system, is the point
in which we want to calculate the amplitude of the wave
field, and the point P0(x0, y0, z0), which also lies in the
image plane of the optical system, is the center of the
reference sphere with the radius R. It holds for the
distance r of point P from point M.

r2 ¼ ðx� xPÞ
2
þ ðy� yPÞ

2
þ ðz� zPÞ

2. (2)

Furthermore, the radius of curvature of the reference
sphere can be expressed as:

R2 ¼ x2
0 þ y2

0 þ z20 (3)

and the equation of the wave front S is given by

ðRþW=nÞ2 ¼ ðx� x0Þ
2
þ ðy� y0Þ

2
þ ðz� z0Þ

2, (4)

where W(x, y) is the wave aberration of the optical
system and n is the refractive index of the optical
medium in the image space. If we denote

u ¼ xP � x0; v ¼ yP � y0, (5)

then by using Eqs. (2)–(5), we obtain

r2 ¼ RþW=n
� �2

� 2 ðx� x0Þuþ ðy� y0Þv
� �

þ u2 þ v2.

(6)

If the wave aberration W is much smaller than the
radius of curvature R (which is always satisfied in
practice), then by using the approximate formula [24]:ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

� 1þ a=2

and Eq. (6), we have

r � Rþ
W

n
�
ðx� x0Þuþ ðy� y0Þv

R
þ

u2 þ v2

2R
. (7)

If the surface S is described by the equation z ¼ z(x, y),
then it holds for the element dS of this surface

dS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

qz

qx

� �2

þ
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s

dxdy ¼
ffiffiffiffi
D
p

dxdy. (8)

Using Eq. (4), we obtain

D ¼ A=B, (9)

where

A ¼ ðRþW=nÞ2 þ dx2 þ dy2 þ 2½dxðx� x0Þ

þ dyðy� y0Þ�,

B ¼ ðRþW=nÞ2 � ðx� x0Þ
2
� ðy� y0Þ

2

and

dx ¼ �
R

n

qW

qx
; dy ¼ �

R

n

qW

qy

are transverse ray aberrations of the optical system.
Previous relations can be simplified for small values of
aberrations as follows:

D ¼ A1=B1,

where

A1 ¼ 1þ 2 dxðx� x0Þ þ dyðy� y0Þ
� �

=R2,

B1 ¼ 1� x� x0ð Þ
2
� y� y0

� �2h i
=R2.

If we denote

p ¼ ðx� x0Þ=R; q ¼ ðy� y0Þ=R,

we obtain

ffiffiffiffi
D
p
¼

1þ ðdxpþ dyqÞ=Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 � q2

p . (10)

Moreover, if we denote

F ðp; qÞ ¼ Uðp; qÞ
ffiffiffiffi
D
p

expðik0W Þ, (11)

s ¼ n
u

l0
; t ¼ n

v

l0
,

where k0 ¼ 2p=l0, and l0 is the wavelength of light in
vacuum, Eq. (11) can be written as follows
ðcosðn; rÞ � 1Þ:

Uðs; tÞ ¼ C

ZZ
S

F ðp; qÞ e�2piðpsþqtÞ dpdq; (12)

where C is a constant. The relation (12) makes possible
to determine the amplitude of the wave field in the image
plane of optical system with the finite value of numerical
aperture. It is clear from this relation that the field
U(s, t) is proportional to the Fourier transform of the
function F(p, q).
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