ARTICLE IN PRESS

Journal of Pharmaceutical Sciences xxx (2016) 1-6

Contents lists available at ScienceDirect

Journal of Pharmaceutical Sciences

journal homepage: www.jpharmsci.org

Pharmaceutics, Drug Delivery and Pharmaceutical Technology

Stability Orders of Acetaminophen and Theophylline Co-crystals Determined by Co-crystal Former Exchange Reactions and Their Correlation With *In Silico* and Thermal Parameters

Makoto Mukaida ^{1, *}, Haruna Sato ², Kiyohiko Sugano ², Katsuhide Terada ³

¹ Asahi Kasei Pharma Corporation, Shizuoka 410-2321, Japan

² Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan

³ Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan

ARTICLE INFO

Article history: Received 3 August 2016 Revised 8 August 2016 Accepted 31 August 2016

Keywords: co-crystals crystal engineering crystal structure physicochemical solid state stability

ABSTRACT

The aim of this study was to determine the thermodynamic stability order of co-crystals using co-crystal former exchange reactions and to validate 2 *in silico* parameters for predicting co-crystal formation. Co-crystal former exchange reactions were performed using acetaminophen (AC) co-crystals of oxalic acid (OX), maleic acid (MA), and theophylline (TH). The addition of TH to an AC-MA co-crystal (AC-MA) afforded AC-TH, suggesting that AC-TH was more stable than AC-MA. The stability order among the other co-crystals was determined in the same manner. The stability order of the AC co-crystals was determined to be AC-TH > AC-MA \approx AC-OX. Interestingly, the addition of TH to AC-OX afforded TH-OX. The stability order of the TH co-crystals was also determined (OX-TH > AC-TH \approx MA-TH). Although the stability order of the AC co-crystal formation, it showed no relationship to the excess enthalpy (H_{ex}). These results suggest that co-crystal formation can be predicted with greater accuracy using ΔE rather than H_{ex} for AC co-crystals. The stability orders of the AC co-crystals also correlated well with their melting points and disintegration temperatures.

© 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

Introduction

Co-crystals can be used to improve the physicochemical properties of active pharmaceutical ingredients (APIs).¹⁻¹² However, there are hundreds of possible co-crystal former (CCF) candidates, making it difficult to determine the best combination for a specific API. The development of new tools for the *in silico* prediction of co-crystal formation based on the chemical structures of APIs and CCFs could therefore improve the efficiency of the CCF selection process in drug discovery. Some *in silico* parameters for CCF selection have been reported by several researchers.¹³⁻²⁰ For example, the difference in the hydrogen bond energy (ΔE) and the excess enthalpy (H_{ex}) was reported by the research groups of

the difference between the hydrogen bond energy of a co-crystal and each component. The hydrogen bond energy is the sum of the products of the hydrogen bond acceptors and donors calculated from the gas-phase molecular electrostatic potential surface. H_{ex} is the difference between the excess enthalpy of a mixture of co-crystal components and that of each component. It is generally expected that the probability of finding a co-crystal increases as these parameters increase in size. We previously reported that the stability order of co-crystals determined using CCF exchange reactions could be used to validate these parameters.²¹ We found that the stability order of 5 caffeine co-crystals determined by the CCF exchange reaction correlated well with the order of the ΔE values. However, the number of model drugs was not sufficient to thoroughly validate the use of ΔE as a predictive parameter in this context. In this study, we have used acetaminophen (AC) as a model compound to increase the level of confidence in this in silico prediction. AC has a simple chemical structure with a hydroxyl group and an amide group (Fig. 1). AC can form

Musumeci¹⁶ and Abramov,²⁰ respectively, as useful in silico

parameters for predicting co-crystal formation. ΔE represents

0022-3549/© 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

This article contains supplementary material available from the authors by request or via the Internet at http://dx.doi.org/10.1016/j.xphs.2016.08.028.

^{*} Correspondence to: Makoto Mukaida (Telephone: +81-(0)558-76-8161; Fax: +81-(0)588-76-7137).

E-mail address: mukaida.mb@om.asahi-kasei.co.jp (M. Mukaida).

ARTICLE IN PRESS

M. Mukaida et al. / Journal of Pharmaceutical Sciences xxx (2016) 1-6

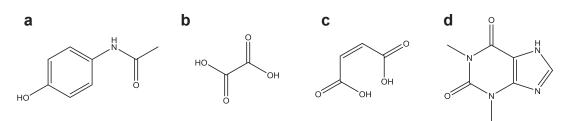


Figure 1. Structures of AC and CCFs. (a) AC, (b) OX, (c) MA, and (d) TH.

co-crystals with various CCFs, making it suitable for the validation of ΔE as a predictive parameter.²²⁻²⁶ In this study, the stability order of the AC co-crystals of oxalic acid (OX), maleic acid (MA), and theophylline (TH) was determined by CCF exchange reactions (Fig. 1). The stability order was then compared with that of the *in silico* parameters.

Experimental

Materials

AC and TH were purchased from Tokyo Chemical Industry Company Ltd. (Tokyo, Japan). OX and MA were purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan).

Preparation of Co-crystals

Co-crystals were prepared by liquid-assisted grinding (LAG) using ethanol. AC (50 mg, 0.33 mmol) was mixed with each CCF and ethanol (5 μ L) in a 1-mL glass vial with four 2.4-mm tungsten balls. The mixture was shaken in a TMS 200 shaker (Hangzhou Allsheng Instruments Company, Ltd., Zhejiang, China) at 1800 rpm for 1-24 h at ambient temperature. The ethanol solvent was then evaporated in a fume hood to give the co-crystals. All of the conditions used for the preparation of the crystals are shown in Table 1.

CCF Exchange Reaction

An equimolar amount of CCF was added to each co-crystal in a 1-mL glass vial with two 2.4-mm tungsten balls. Ethanol (15 μ L, except for the MA cases) was then added to the vial, which was then shaken in a BMS-TMS 200 shaker at 1800 rpm for 22 h at ambient temperature. When MA and OX were added to the AC-OX and AC-MA co-crystals, respectively, the volume of ethanol was reduced from 15 to 2 μ L on account of the high solubilities of OX and MA. The ethanol solvent was subsequently evaporated in a fume hood.

Powder X-Ray Diffraction

Powder X-ray diffraction (PXRD) patterns were measured on a Bruker D8 Discover diffractometer (Bruker AXS GmbH, Karlsruhe,

Table 1

Conditions for the Preparation of the Different Co-crystals

Co-crystal	Amount of CCF (mg)	Molar Ratio of the Components	Reaction Time (h)
AC-OX	30	1:1	1
AC-MA	38	1:1	2
AC-TH	59	1:1	24
OX-TH	30 (OX), 119 (TH)	1:2	2
MA-TH	38 (MA), 59 (TH)	1:1	2

Germany) in the reflectance mode (Cu K α radiation [40 kV and 40 mA]). Samples were mounted on a glass plate and the diffraction patterns were collected from $2\theta = 3.8^{\circ}$ to 26.3° with a step size of 0.02° for 3 min.

Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) analyses were performed on a TA DSC Q2000 system (TA Instruments, New Castle, DE). Samples (2.5 to 3.1 mg) were loaded into aluminum pans, which were subsequently sealed and heated from 40° C to 200° C or 300° C at a rate of 5° C/min under a steady stream of nitrogen (flow rate, 50 mL/min).

Results and Discussion

Determination of the Stability Order of Co-crystals Using CCF Exchange Reactions

Three AC co-crystals were prepared by LAG using ethanol. The AC-MA co-crystal (AC-MA) was isolated as a yellow powder, whereas the other co-crystals were all white powders. The PXRD patterns of these co-crystals and their components are shown in Figure 2. These patterns were identical to those previously reported, except for AC-MA, the PXRD pattern of which has been reported for the first time in this study.²⁶ CCF exchange reactions were performed by LAG using ethanol. The results of a preliminary study revealed that a CCF exchange reaction time of 22 h was sufficient in most cases, and all of the subsequent reactions were performed over this time period. The results for these reactions are shown in Figure 3 and Supplementary Figures 1 and 2 and summarized in Table 2. The addition of TH to AC-MA afforded an AC-TH co-crystal (AC-TH). In contrast, the addition of MA to AC-TH did not afford AC-MA. These results therefore suggested that AC-TH was more stable than AC-MA (Fig. 3). Interestingly, MA-TH was obtained as a side product in both reactions. When MA and OX were added to AC-OX and AC-MA cocrystals, we obtained a mixture of AC-OX and AC-MA, respectively (Supplementary Fig. 1), suggesting that the stabilities of these co-crystals were similar. When TH was added to AC-OX, we obtained an OX-TH co-crystal (OX-TH) instead of AC-TH (Supplementary Fig. 2). Similarly, the addition of OX to AC-TH afforded OX-TH (Supplementary Fig. 2). These results suggested that it is possible for a co-crystal of an API to lose its CCF and be converted to free API when it is treated with another molecule capable of forming a more stable co-crystal with the CCF.

Co-crystals of OX, MA, and TH were prepared to confirm the relationship between the AC co-crystals and several other co-crystals. The OX-TH and MA-TH co-crystals were obtained by LAG with ethanol. However, this technique failed to afford any OX-MA co-crystal (OX-MA). The PXRD patterns of OX-TH and MA-TH (Supplementary Fig. 3) were consistent with previous reports from the literature.²⁷ The CCF exchange reactions using

Download English Version:

https://daneshyari.com/en/article/8514619

Download Persian Version:

https://daneshyari.com/article/8514619

Daneshyari.com