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a b s t r a c t

Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of
respiratory diseases, but are complex products with multivariate performance determinants. Heuristic
product development guided by in vitro aerosol performance testing is a costly and time-consuming
process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict
fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were
evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset
containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental obser-
vations). Principal component analysis was used to identify inputs that significantly affected FPF.
Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method.
The primary OA ANN r2 values ranged between 0.46 and 0.90 and the secondary OA increased the
r2 values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r2 0.92 ± 0.02) included active
pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis,
which reflected the recognized importance and interdependency of these factors for orally inhaled
product performance. The Taguchi method was effective at identifying successful architecture with the
potential for development as a useful generic inhaler ANN model, although this would require much
larger datasets and more variable inputs.

© 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

Introduction

Dry powder inhalers (DPIs) are increasingly popular for
delivering drugs to the lungs for the treatment of respiratory
diseases. Over the last 2 decades, device and formulation technol-
ogies have developed considerably, along with the scientific
understanding of the determinants of inhaler performance.1-7

In vitro impactor deposition is the principal pharmaceutical
performance assay and is an essential assessment during the
development and registration of new originator or generic DPI
formulations.8 The fine particle fraction (FPF) determined using
in vitro deposition techniques has been used as a DPI performance
characteristic for mechanistic modeling,6 in vitroein vivo

correlation,9 and to make estimations of clinical relevance.5 FPF is
defined as the proportion of the particles that are <5 mm in diam-
eter, that is, the respirable dose. Modeling the influence of formu-
lation and device variables on FPF could facilitate the development
of the next generation of inhaled medicines10 and the matching of
test inhalers to reference products during the development of
generic products.8,11

As the patents for inhaled drugs expire, many companies are
expending much effort in developing generic versions of innovator
inhaled medicines. The U.S. Food and Drug Administration and
EuropeanMedicine Agency have clear processes bywhich a generic
orally inhaled product can be developed for the market,12 both of
which include extensive in vitro studies.13,14 The U.S. Food and Drug
Administration recently issued specific guidance for salmeterol-
fluticasone combinations aiming for registration as a generic
Advair15,16 including the requirement to match FPF. For generic
product development, the matching of in vitro performance is the
obvious first stage in product development. However, heuristic
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development of a product guided by in vitro FPF is a costly and
time-consuming process. There has already been interest in using
in silico models to streamline this process and there is a belief that
modeling may become increasingly crucial in the design and
development of inhaled drug products.17 Linear regression models
have been used to understand the complex formulation charac-
teristics of DPIs,6,18 for example, Kinnunen et al.19 showed a best r2

value of 0.861 between the physical properties of the carrier
(amount of fines which are <4.5 mm in size) and the in vitro per-
formance of the formulation, for example, FPF. Regression models
make the assumption that relationships between physiochemical
factors are linear. As such, prediction of pharmaceutical response
based on these polynomial relationships is limited and can provide
an incomplete estimate of the observed response in experimental
determinations. Therefore, there is a need to investigate non-linear
models as an alternative approach to determinewhether or not this
improves model quality.20 The use of artificial neural networks
(ANNs) is one such technique that could be exploited.

ANNs are computational models that replicate the way the hu-
man brain processes information, by linking input variables to a
desired output via the selective activation of artificial “neurons” in a
complex network (Fig. 1).21 The ANN is typically separated into
3 sections: the input layer, the hidden layer, and the output layer.
The input layer contains information that will be used as stimuli for
the ANN, such as experimental variables. The elements of the input
layer are connected to the neurons of the hidden layer via links.
Each link has aweight value (w) associatedwith it, and each neuron
receives numerical input from each of the elements of the input
layer (element value � link weight). The hidden layer neuron can
exist in one of the 2 states: inactive or active. Whether or not a
neuron is active or inactive is determined by an activation
threshold function. If the sum of the numerical inputs from the
elements of the input layer exceeds the threshold value then the
neuron is activated. Activated neurons then communicate with the
output layer. Each neuron in the hidden layer is connected via a link
(with an associated weight, w) to each element in the output layer.
The elements in the output layer define one of a possible number of
permissible outcomes from the input. The output value(s) selected
by an ANN is a function of the neurons activated in the hidden layer.

Supervised ANNs, such as the ones used in this investigation,
work by training the network to generate a desired output from
input variables using an iterative process of calculating and mini-
mizing the error between the generated and expected output
value.22 Error is minimized by manipulating the weights associated
with the links between the 3 layers of the ANN via a process known
as backpropogation.23

ANNs are powerful pattern recognition tools and have been
utilized for analyzing inhaled drug delivery. Nazir et al.24,25

produced ANNs for predicting the regional and total aerosol
deposition in the human lungs and De Matas et al.26-28 produced

ANNs that predicted deposition and clinical effects for pulmonary
drug delivery (improvements in the forced expiratory volume in 1 s
and urinary excretion of the drug in 24 h). To create an optimal ANN
architecture, manymodels need to be created and tested, which can
be challenging and time-consuming. Hence, any techniques that
can help to reduce the number of architectures that need to be
investigated are useful with respect to streamlining the develop-
ment process. As such, the Taguchi method has beenwidely used in
formulation development29,30 and in designing the architecture of
ANNs.31-33 Design of experiments has also been used to evaluate
the effect of lactose size fractions on the performance of the dry
powder formulation,2 but has not been used to design an optimum
ANN predicting the in vitro performance of a DPI. The objective of
this study was to investigate the feasibility of using ANNs to predict
FPF based on formulation device variables. The Taguchi method,
which has not previously been applied to ANN to predict the FPF of
DPI, was used to develop an optimized ANN.

Methods

Materials

Unscrambler™ was obtained from CAMO Software (Oslo,
Norway), while Minitab™ was from On Line Computers (York, UK).
Neurosolutions™ was from Neuro-dimension (Gainsville, FL).

Experimental Data for Modeling

The self-consistent dataset used in this study was assembled
from studies into the effect DPI formulation factors on FPF reported
by Hassoun et al.,34 Muddle et al.,35 and Parisini36 (Table 1) where
we define a self-consistent dataset as experimental data for a range
of compounds and/or formulation types that has been obtained
using identical experimental procedures. Two of these studies,
investigating the effect of the carrier lactose particle, total fine
lactose content and device resistance on FPF of salmeterol xina-
foate34 and salbutamol sulfate,35 were performed in the same
manner to allow direct comparison. In brief, the active pharma-
ceutical ingredient (API) was blended with 3 coarse lactose grades
(Respitose® ML001, Respitose ML006, and Lactohale® LH200) and
different amounts of fine lactose were added (0%-20%) (Lactohale
LH300). These formulations were tested using a next-generation
pharmaceutical impactor to measure their in vitro deposition
with 3 different inhalers (Aeroliser®, Handihaler®, and Rotahaler®).
The third study36 investigated salmeterol xinafoate and salbutamol
sulfate blended with a different coarse lactose (Respitose SV003) ±
addition of 5% fine lactose. These 4 formulations were then tested
using a Cyclohaler® at 2 different pressure drops (2 and 4 kPa).
Thus, the combined dataset had 2 APIs (salmeterol xinafoate and
salbutamol sulfate) tested with 4 different inhalers (Aeroliser,
Handihaler, Rotahaler, and Cyclohaler) and 4 different coarse
lactoses blended with a variety of different fine lactose ratios to
allow a large range of total fines content to be examined (Table 1).

To allow the datasets to be combined as described above, the
device factors, resistance, test flow rate (Q), and pressure drop (P)
were converted to a value for the power generated by simulated
“inhalation” through the inhaler at each flow rate using an estab-
lished method37 (Eq. 1). This enabled the 3 original datasets to be
combined by overcoming the problem that the 3 inhalers were
originally tested at different flow rates.

Power ¼ P:Q : (1)

The records in the combined dataset (237 records) were split
into a training set (60% of the records), a cross validation (CV, 20%

Figure 1. A simplified structure for a supervised ANN showing the feedforward links
from the input layer to one neuron of the hidden layer which subsequently feeds onto
the output layer (prediction of FPF). Input layer elements are the properties of API,
formulation factors, and device factors. The output layer is product performance in
terms of FPF.
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