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a  b  s  t  r  a  c  t

The  scattering  process  of  plane  waves  by  a wedge  with  different  face  impedances  is  examined  in  terms  of
the closed  form  series  solution.  A new  boundary  condition  is derived  using  the  solution  of  the  reflection
problem  of  plane  waves  by an impedance  plane.  The  series  solution  is  obtained  for  the  wedge  problem.
The  results  are  investigated  numerically.
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1. Introduction

When the waves meet an obstacle on their path of propagation,
they bend and enter the places in the shadow regions. This phe-
nomenon is named as diffraction in the literature [1].  The portion
of the waves that propagates without unaffected by the obstacle is
the geometrical optics (GO) field. The sum of the diffracted waves
and (GO) fields is known as the scattered waves. The rigorous way
of obtaining the solution of a scattering problem is the method of
separation of variables [2].  The availability of the exact solutions
of the Helmholtz equation with this method is restricted with the
geometry of the scatterer. Only the solutions of some canonical
problems were obtained [3]. The scattering problems by complex
bodies are investigated by high frequency asymptotic methods [4].

Another important factor in the examination of a scattering
problem is the boundary conditions that must be satisfied by the
total field on the scattering surface. There are two  limiting cases for
the boundary conditions. A surface can reflect all the waves that hit
on it or absorb them. Two boundary conditions can be defined for
a perfectly reflecting surface. The total field can be equal to zero
(Dirichlet condition) or its normal derivative is equal to zero (Neu-
mann condition) on the surface. There are no rigorous boundary
conditions for a perfectly absorbing surface. In practical, the sur-
face absorbs some of the incident radiation and reflects a portion
which is decreased in amplitude. A dielectric coated metallic sur-
face is an example of this case [5,6]. Such surfaces are modeled by
the impedance boundary conditions, which define a ratio of the
field and its normal derivative on the scattering surface [7].

E-mail address: yziya@cankaya.edu.tr

The first investigation of the scattering problem of waves by
an impedance half-plane was  put forward by Raman and Krish-
nan [8].  They realized that the solution of the scattering problem
of waves by a perfectly conducting half-plane was not adequate for
the physical interpretations of the observations on edge diffraction.
For this reason they examined the case for a non-perfectly con-
ducting half-screen. They considered the solution of Sommerfeld,
which is expressed in terms of Fresnel integrals [9],  and introduced
the scattered fields by a non-perfectly conducting half-plane by
multiplying the expression of the reflected scattered waves by a
suitable complex reflection coefficient. In 1952, Senior obtained
the solution of the half-screen problem for equal face impedances
by solving an integral equation with the method of Wiener–Hopf
factorization [10]. The solution of the problem was derived for the
two cases of electric and magnetic polarization. Malyuzhinets takes
into account a more general problem of scattering of waves by a
wedge with two impedance faces and obtained the solution using
the complex integration technique of Sommerfeld [11,12]. In the
same years, Senior extended his research on the diffraction of waves
by an impedance wedge and scattering by a half-plane for oblique
incidence [13,14]. He used the same method of Wiener–Hopf fac-
torization. The diffraction problem of waves by the impedance
half-screen and wedge was also investigated by Williams, who  used
a contour integration method in order to obtain the solution [15,16].
The following studies were focused on the physical interpretations
and uniform expressions of the former results [17–21].  However
the developed expressions for the diffracted waves are not suit-
able for practical applications since they include a meromorphic
function, named the Malyuzhinets function. An improved physical
optics approach was put forward for us for the scattering problems
of impedance half-screen and wedge [22,23].
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It is the aim of this study is to obtain the closed form series
solution of the scattering problem of plane waves by a wedge with
different face impedances. First of all we will investigate the prob-
lem of diffraction of waves by an interface between two impedance
half-planes. The results will be compared with that of Malyuzhinets
and the limiting cases of soft and hard half-planes will also be exam-
ined. The solution of the wedge problem will be obtained directly
from the expressions of the previous problem. The result will be
plotted numerically.

A time factor of exp(jwt) is suppressed throughout the paper. w
is the angular frequency.

2. Diffraction by an interface between two impedance
half-screens

An interface between two impedance half-planes is taken into
account. An incident plane wave of

ui = u0e
jk� cos(�−�0) (1)

is illuminating the plane. k is the wave-number which is equal to
2�/� where � is the wave-length. �0 is the angle of incidence.
The polar coordinates are defined as (�, �). The geometry of the
problem is given in Fig. 1.
Z1,2 is the impedance of the surface. P is the observation point.

We will define the expression of

sin �1,2 = Z0

Z1,2
(2)

where Z0 is the impedance of the free space. The impedance
boundary condition can be given by the equation of u|S =
(1/jk sin �)(∂u/∂n)S . Now we will consider a whole impedance
plane, the surface impedance of which is equal to Z. The scattered
fields can be immediately written as

ut = ui +
sin�0 − sin �

sin�0 + sin �
ur (3)

for ur is the reflected field. We  propose the boundary conditions of

(ui − ur)|S = 0 (4)

and

∂(ui + ur)
∂n

∣∣∣∣
S

= 0 (5)

for soft and hard surfaces, respectively. n is the unit normal vector
of the surface. Then Eq. (3) can be rewritten as

ut = sin �

sin �0 + sin �
us + sin �0

sin �0 + sin �
uh (6)

where us and uh represent the scattered fields by soft and hard
surfaces, respectively. Eq. (6) shows that the scattered fields by an
impedance surface can be expressed in terms of the scattered fields
by soft and hard surfaces with the same geometry. Note that the
scattered field, given by Eq. (6),  reduced to the scattered field by
soft and hard surfaces for sin � → ∞ and sin � → 0, respectively.
If sin � is equal to sin �0, the condition of a black surface can be
obtained [24].

Now we return to the problem, given in Fig. 1. There are two
limiting cases. If Z2 is equal to zero, the surface at � = � will be a
soft surface. If Z2 approaches to infinity, then the surface becomes
a hard surface. In fact these cases are the two limiting values of the
reflection coefficient, given in Eq. (3).  In the first and second cases
R is equal to −1 and 1, respectively. Note that R is defined by the
equation of

R = sin�0 − sin �

sin �0 + sin �
(7)
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Fig. 1. Geometry of the interface.

We  will introduce the notions of  ̨ and ˇ, which are equal to

˛ = sin �
sin�0 + sin �

(8)

and

ˇ = sin �0

sin �0 + sin �
(9)

respectively.

2.1. Case 1

First of all we will consider the scattering problem for Z2 = 0.
Note that ˛2 = 1 and ˇ2 = 0 for this case. The Helmholtz equation
of

∇2u + k2u = 0 (10)

will be solved with the boundary condition of

ut |�=� = 0 (11)

where ut is equal to ˛1us + ˇ1uh according to Eq. (6).  A general
solution of the Helmholtz equation can be given by the expression
of

u = Jv(k�)[Av sin(v�) + Bv cos(v�)] (12)

in the polar coordinates for v is the separation constant. Av and Bv
are the constant coefficients. Jn(x) is the Bessel function. Since the
problem includes the origin, the Neumann function is not taken
into account. The scattered field can be written as

ut = Jv(k�)[˛1Av sin(v�) + ˇ1Bv cos(v�)] (13)

according to the soft and hard boundary conditions on the plane of
� = 0. The total scattered field is found to be

ut = 4u0

[
˛1

∞∑
n=1

Jn(k�)ejn(�/2) sin(n�) sin(n�0)

+ˇ1

∞∑
n=0

Jϑn (k�)ejϑn(�/2) cos(ϑn�) cos(ϑn�0)

]
(14)

when the boundary condition, in Eq. (11), is taken into account.
ϑn is equal to (2n  + 1)/2. The condition of ˛1 < ˛2 is valid for this
situation. The coefficients of Av and Bv are determined from the
series expression of the incident field [25].

2.2. Case 2

Z2 approaches to infinity. ˛2 and ˇ2 are equal to zero and one,
respectively. The half-plane at � = � is a hard surface and the
boundary condition can be given by the expression of

∂ut
∂n

∣∣∣∣
�=�

= 0 (15)
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