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Cerenkov  type  second  harmonic  generation  (CSHG)  is proposed  in  ion-implanted  Z-cut  lithium  niobate
(LiNbO3)  channel  waveguides.  We  have  obtained  exact  analytical  solutions  for the  field  distribution  and
the  power  of  second-harmonic  waves.  Conditions  for  attaining  higher  conversion  efficiency  are  discussed
on  the  basis  of numerical  calculations.

© 2011 Elsevier GmbH. All rights reserved.

1. Introduction

The nonlinear optics phenomenon of second harmonic gener-
ation (SHG) is much of interest in the area of high density optical
data storage, color image processing, and optical measurements.
CSHG occurs when the nonlinear second harmonic polarization
wave generated in the nonlinear medium has a phase velocity faster
than that of the free second-harmonic wave in the material. For this
case, phase matching is automatically satisfied. So it has large toler-
ances for fabrication and work conditions, which is a very important
advantage especially in SHG of semiconductor laser light source.
[1–10].

This Cerenkov scheme of SHG was first proposed and used by
Tien et al. in a ZnS–ZnO slab waveguide [1].  Theoretical analyses
of CSHG have been reported by several authors. They use several
approaches, such as the antenna theory [1],  the dipole radiation
theory [2],  or the coupled mode theory [3,4]. CSHG from a planar
waveguide was analyzed in our previous paper [5].  In slab waveg-
uides, an approximate can be applied as the transverse dimensions
are larger than the thickness while in channel waveguide the width
is limited. Almost all optical waveguides used as coupler or modula-
tor in integrated optics technology can be considered to be channel

∗ Corresponding author.
E-mail address: guolongdu@gmail.com (G.L. Du).

waveguides. However, to our knowledge, no paper attempts to
explain the general characteristics of CSHG in ion-implanted chan-
nel waveguides.

In this paper, we  have obtained exact analytical solutions for
the field distribution and the power of second-harmonic waves
in ion-implanted channel waveguides. Higher efficiency CSHG of
channel waveguides will be attainable when parameters are well
matched.

2. Theory

Fig. 1 illustrates a typical CSHG configuration, as a representative
of devices using channel waveguides. The channel is assumed to
be parallel to one of the optical principal axes of the waveguide
material, and the axis is taken as the z axis of the coordinate system.
We treat only the case of a z-cut substrate, in this geometry only
TM pump is possible for CSHG.

In the notation of field and refractive indices, the subscripts f and
h imply fundamental and harmonic field. Besides, the subscripts 1,
2, and 3 denote the waveguide, the substrate, and the cladding,
respectively.

The geometrical effect plays an important role in CSHG, and our
calculation for channel waveguides takes into account the whole
area surrounding the guiding layer which contains most of the
energy radiated by CSHG.
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Fig. 1. Configuration of the channel waveguide with respect to the crystal axes.

2.1. Mode distribution of fundamental wave

By applying Maxwell’s equations, we can obtain the expression
of field Efx,

Efx =

⎧⎪⎪⎪⎪⎪⎪⎨
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(2.1.1)

with the dispersion equations for propagation and decay constants
as follows:
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The continuity of the field Efz at the boundaries x = b and x = 0 as
well as Hfz at y = a leads to eigenvalue equations:
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(m = 0, 1, 2, 3, . . .)  (2.1.2)
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(
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(m = 0, 1, 2, 3, . . .)  (2.1.3)

For the TM pumping situation, the fundamental wave power
then can be written as

Pf =
N2

f
ab
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cf (2.1.4)
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2.2. Mode distribution of second generation wave

Maxwell’s equations for the second-harmonic fields are

∇ × Eh = −�0
∂Hh

∂t
(2.2.1A)

∇ × Hh = ε0εh
∂Eh

∂t
+ ∂P

∂t
(2.2.1B)

The nonlinear polarization which acts as a source for the second
harmonic radiation is given by

Px = ε0d33E2
fx, Py = 0, Pz = 0

From (2.2.1), we can derive⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(2.2.2)

This is the electromagnetic field distribution of SHG. In TM
mode, only Hy,  Ex and Ez can propagate. Hy and Ez can be rep-
resented by Ex.

The solution to Ehx will involve a general solution to the
homogeneous equation as well as a particular solution to the inho-
mogeneous equation. Px can be obtained by

Px = ε0d33E2
fx (2.2.3)

Then, Ehx can be easily obtained through the electromagnetic field
distribution of SHG.

Ehx =
{

De−kh3(x−b) (cover)
A  e−ikh1x + B eikh1x + s11 cos 2(�f x + �f ) + s12 (waveguide)
C  eikh2x + s2 e2rfxx (substrate)

(2.2.4)
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