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Nonparaxial Lorentz and Lorentz–Gauss beams

Hong Yu, Lingling Xiong, Baida Lü�
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Abstract

The Lorentz and Lorentz–Gauss beams are extended to the nonparaxial regime. Analytical propagation expressions
of nonparaxial Lorentz and Lorentz–Gauss beams in free space are derived, and the propagation of paraxial Lorentz
and Lorentz–Gauss beams is treated as a special case of our general results. The propagation properties of Lorentz and
Lorentz–Gauss beams are illustrated and compared with numerical examples.
r 2009 Elsevier GmbH. All rights reserved.
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1. Introduction

As yet, the propagation of laser beams has been
extensively studied within the framework of the paraxial
approximation [1]. In recent years a variety of new types
of beams, such as Ince–Gaussian, Helmholtz–Gauss,
Laplace–Gauss, Mathieu–Gauss, Lorentz, Lorentz–Gauss,
super-Lorentzian beams, etc. have been introduced
[2–7]. Among them the Lorentz and Lorentz–
Gauss beams are of particular interest, because as
shown in Refs. [8,9], for certain laser sources, e.g., for
double-heterojunction Ga1�xAlxAs lasers, a truncated
Lorentzian distribution is a better approximation in the
direction perpendicular to the junction than a Gaussian
one. However, for Ga1�xAlxAs lasers the active regions
are as narrow as 0.1 mm for a typical emission
wavelength of �0.8 mm. Therefore, for such a case, i.e.,
for beams with small spot size and large divergence
angle the paraxial approximation is no longer valid
[10,11]. The purpose of the present paper is to extend the

Lorentz and Lorentz–Gauss beams introduced in
Ref. [6] to the nonparaxial regime. Based on the
Rayleigh–Sommerfeld diffraction integral, closed-form
propagation expressions of nonparaxial Lorentz and
Lorentz–Gauss beams in free space are derived and
some interesting special cases are discussed. Specifically,
our results reduce to those in Ref. [6] in the paraxial
approximation. The propagation properties of Lorentz
and Lorentz–Gauss are illustrated and compared.

2. Propagation of nonparaxial Lorentz beams

in free space

Assume that the field of a Lorentz beam at the place
z ¼ 0 takes the form [6]

ELðx0; y0; 0Þ ¼
AL

wxwy

1

½1þ ðx0=wxÞ
2
�

1

½1þ ðy0=wyÞ
2
�
, (1)

where wx and wy are parameters related to the beam
width in the x and y directions, respectively, and AL is a
constant.

The beam propagation for the general case is
characterized by the Rayleigh–Sommerfeld diffraction
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integral of the form [12]

Eðx; y; zÞ ¼ �
1

2p

Z 1
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@
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expðikRÞ

R
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dx0 dy0,

(2)

where R ¼ jr� r0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ

2
þ ðy� y0Þ

2
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q
, r0 ¼

x0i+y0j, r ¼ xi+yj+zk, i, j and k being unit vectors in
the x, y and z directions, respectively, and k denotes the
wave number related to the wavelength l by k ¼ 2p/l.

Expanding R into

R ¼ jr� r0j � rþ
x2
0 þ y2

0 � 2xx0 � 2yy0

2r
, (3)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and substituting Eqs. (1) and

(3) into Eq. (2), by means of the convolution theorem in
Fourier transform [13], tedious but straightforward
integral calculations yield

ELðx; y; zÞ ¼
ALp2
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where
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Z ¼ x, y (unless otherwise stated), and erf( � ) denotes the
error function. Eq. (4) provides the analytical free-space
propagation expression of Lorentz beams beyond the
paraxial approximation, which is valid for Rbl and for
both the Fresnel zone and Fraunhofer zone, and
indicates that EL(x, y, z) depends on the fx- and fy-
parameters and observation position. Some special cases
of Eq. (4) are of interest.

(1) On-axis field
On placing x ¼ y ¼ 0 into Eq. (4), the on-axis field is
given by

ELð0; 0; zÞ ¼
ALp2
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(2) Far-field expression
Under the far-field approximation

R � r�
xx0 þ yy0

r
. (8)

Eq. (4) reduces to

EL;f ðx; y; zÞ ¼
AL;f p2z
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Furthermore, from Eq. (9) the on-axis intensity in
the far field is given by

IL;f ð0; 0; zÞ ¼ jEL;f ð0; 0; zÞj
2 ¼

A2
L;f p

4

l2z2
. (10)

Eq. (10) implies that the on-axis intensity in the
far field is inversely proportional to z2.

(3) Paraxial propagation
If the paraxial approximation

r � zþ
x2 þ y2

2z
(11)

is used, Eq. (4) simplifies to
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AL;pp2

4

expðikzÞ

ilz

� ðVþx;Lp þ V�x;LpÞðV
þ
y;Lp þ V�y;LpÞ,

(12)
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Eq. (12) is consistent with Eq. (15) in Ref. [6].

Figs. 1(a) and (b) give normalized intensity distribu-
tions I(x, 0, z)/I(0, 0, z) of a Lorentz beam with
fx ¼ fy ¼ f ¼ 0.83 at the planes (a) z ¼ 6 mm and (b)
z ¼ 100 mm, respectively. For comparison the paraxial
results by using Eq. (12) are plotted together. In
Fig. 1(b) the use of Eqs. (4) and (12) delivers the same
result. As can been seen, the intensity profiles in the
Fresnel zone in Fig. 1(a) and in the Fraunhofer zone in
Fig. 1(b) are somewhat different, although both are bell
shaped. In addition, a noticeable difference between the
paraxial and nonparaxial results appears when the fx-
parameter is large enough, namely, wxpl. However, as
shown in Figs. 2(a) and (b), with decreasing fx-
parameter form fx ¼ 0.62 to fx ¼ 0.23, the paraxial
approximation is applicable, which can be illustrated in
more detail in Fig. 3, where the relative difference
between the paraxial and nonparaxial intensities
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