Computers and Electronics in Agriculture 66 (2009) 46-52

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Contents lists available at ScienceDirect

Support vector machines regression and modeling of greenhouse environment

Dingcheng Wang?®*, Maohua WangP, Xiaojun Qiao¢

2 Institute of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
b Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
¢ National Engineering Research Center for Information Technology in Agriculture, Beijing 100083, China

ARTICLE INFO

Article history:

Received 5 August 2007
Received in revised form
15 November 2008
Accepted 2 December 2008

Keywords:
LSSVMR
Greenhouse
Online

Sparsity, Modeling

ABSTRACT

The greenhouse environment is an uncertain nonlinear system which classical modeling methods cannot
solve. Support vector machines regression (SVMR) is well supported by mathematical theory and has a
simple structure, good generalization ability, and nonlinear modeling properties. Therefore, SVMR offers
avery competent method for modeling the greenhouse environment. However, to deal with uncertainty,
the model must be rectified online, and Online Sparse Least-Squares Support Vector Machines Regression
(OS_LSSVMR) was developed to solve this problem. OS_LSSVMR reduced the number of training samples
through use of a sample dictionary, and consequently LSSVMR has sparse solutions; the training samples
were added sequentially, so that OS_.LSSVMR has online learning capability. A simplified greenhouse
model, in which only greenhouse internal and external air temperatures were considered, was presented,
after analyzing the factors in the greenhouse environment. Then the OS_LSSVMR greenhouse model was
constructed using real-world data. The resulting model shows a promising performance in the greenhouse

environment, with potential improvements if a more complete data setup is used.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The greenhouse environment is a very complex dynamic system
covered with thin and transparent materials. This system satisfies
the conditions for plant growth, but creates difficulties in con-
trolling the greenhouse environment because of time delays and
intensive disturbances from the surroundings, such as global radi-
ation, wind speed and direction, and external air temperature and
humidity. In the view of classical feedback control, such a system
is poorly controlled if disturbance monitors and model based feed
forward control is not applied. For this reason, computer control
technology for the greenhouse environment continues to require
serious attention from researchers and engineers in various fields,
although it has been studied since the 1980s.

The basic problem is modeling of the greenhouse environ-
ment, because many control methods, such as adaptive control,
feedback control, and intelligent control, require a precise model.
Therefore, many modeling methods have been proposed for this
purpose, including mechanism modeling, transfer function mod-
eling, and black-box modeling. The mechanism model provides a
clear physical explanation of the greenhouse environment, such as
the early static and dynamic model presented by Bot (1983) based
on the principle of conservation of energy and the improved mod-
els presented by Van Henten and De Zwart (Van Henten, 1994;
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De Zwart, 1996). The transfer function model has a simple struc-
ture (Udink, 1985; Nielsen and Madsen, 1995) but is applicable
only to linear systems. The black-box model is based on input and
output data and is suitable for both linear and nonlinear model-
ing.

Neural networks can model nonlinear systems and have been
applied to greenhouse environment modeling (Ferreira et al., 2002;
Seginer, 1997; Caponetto et al., 2000; Morimoto and Hashimoto,
2000). However, the application of neural networks, based on
the empirical risk minimum (ERM), is limited because of its dis-
advantages, including stopping at local minima, overfitting, and
selection of types depending excessively on experience. SVMR,
based on structural risk minimization (SRM), can model nonlin-
ear systems without these disadvantages (Vapnik, 2000; Muller et
al., 1997). However, to deal with uncertainty, the model must be
rectified online, and currently SVMR does not offer this function.
Compared to the existing work already reported in the literature,
the contributions and novelty of this paper reside in the follow-
ing three aspects: (1) novel method of modeling the greenhouse
environment based on SVMR, (2) use of OS_LSSVMR(Online Sparse
Least-Squares Support Vector Machines Regression) to solve the
online learning problem, and (3) use of OS_LSSVMR to reduce the
setof training samples using a sample dictionary (Engel et al.,2002),
with the result that LSSVMR has sparse solutions and SVMR can be
used to model the greenhouse environment. Different from on-line
with a forgetting factor to take care of time drift (Albright et al.,
1985), OS_LSSVMR need not considering time constant is simple,
and nonlinear modeling.
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This paper presents the SVMR modeling method and online
learning approach for the greenhouse environment and is struc-
tured as follows: Section 2 introduces the principles of SVMR and
of OS_LSSVMR. Section 3 presents the principles of modeling the
greenhouse environment using SVMR. Section 4 presents the exper-
imental results from real-world data and discussion, and Section 5
presents conclusions.

2. Principles of SVMR
2.1. Support vector machines (SVM)

SVM were originally developed for pattern recognition. To find
good decision rules for pattern recognition, the typically small sub-
set of all training examples which defines the decision boundary
is called the support vector. Separation of the support vector is
equivalent to separation of all examples. The concept of SVM came
from the principle of the optimal separating hyperplane, which
could separate examples without error and maximize the distance
between the closest vector and the hyperplane. The formulation of
SVM is similar to a perceptron in neural networks, and the output is
a linear combination of all middle nodes. Each of the middle nodes
maps to a support vector. Further details about SVM and the opti-
mal separating hyperplane can be found in the literature (Vapnik,
2000).

2.2. Support vector machines regression

The support vector method for estimating indicator functions
is called SVM. Support vector machines regression (SVMR) is a
generalization of support vector machines to estimate real-valued
functions (Vapnik, 2000). SVMR is also called SVR to distinguish
it from SVM. SVMR are gaining popularity due to many attractive
features, and promising empirical performance. The formulation
embodies the Structural Risk Minimization (SRM) principle, which
has been shown to be superior to traditional Empirical Risk
Minimization (ERM) principle employed by conventional neural
networks. SRM minimizes an upper bound on the generalization
error, as opposed to ERM which minimizes the error on the training
data. It is this difference which equips SVMs with a greater ability
to generalize (Steve, 1998).

The basic idea of SVMR is that the data vector x is mapped into
a high-dimensional feature space F by a nonlinear mapping @, and
then linear regression is performed as follows:

fxX)=w-DP(x)+b (D:R"— F,weF), (1)

where b is a threshold value. The resulting linear regression in a
high-dimensional feature space corresponds to a nonlinear regres-
sion in the low-dimensional input space, so that the dot product
computation of w, @(x), in high-dimensional space is avoided.
Because @ is a map, the value of w can be obtained from the data
by minimizing the sum of the empirical risk Remp and a complexity
term ||w|? that enforces flatness in feature space. That is,

I

R(W) = Remp + AIwl? =Y "e(f(x)) = y;) + M|, (2)
i=1

where [ is the number of examples, A is a regularization constant,

and e(.) is a cost function. According to the literature (Vapnik, 2000;

Drucker et al., 1997; Vapnik et al., 1997), the cost function e(.) in
formulation (2) can be represented as follows:

(1) Linear e-insensitive cost function:

e(f(x) —y) = max(0, |f(x) - y| — &) 3)

Jx)

Fig. 1. The structure of SVMR.

(2) Quadratic cost function:

e(f(x) —y) = (f(x) - y)? (4)

(3) Huber cost function:
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To minimize R(w), first obtain «; — o, and then,

I
w=" (- a})P(x), (6)
i=1

where o, o is the solution which minimizes R(w). For details, see
(Steve, 1998). According to Egs. (1) and (6), f(x) can be rewritten as:

1

l
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where K(x;, x) = @(x;) - @(x) is called a kernel function, which is
any symmetric kernel function satisfying Mercer’s condition and
corresponds to a dot product in some feature space (Boser et al.,
1992). Therefore there are many types of kernel function, such as
the polynomial kernel function K(x;, x) = [(x - x;) + 1]7, the RBF ker-

nel function K(x;, x) = exp{— |x —X; |2/202}, and the sigmoid kernel
function K(x;, x) = tanh(v(x - x;) + c¢) (Vapnik, 2000; Drucker et al.,
1997).

b can be computed by choosing a point on the margin using eq.
(7). However, for stability purposes, it is recommended to take the
average over all points on the margin,

!
b = average {(Sk + Vi — Z(oci - oc;"_ WK(x;, xk)} (8)

i=1

where § is a prediction error for the g-insensitive cost function,
d = esign(ay — a3); for the Huber cost function, & = (1/C)(ey —
a;) (Vapnik, 2000). The structure of SVMR (shown in Eq. (7)) is
shown in Fig. 1.

InFig. 1, B; = aj — &}, X1, X, . . .,x3 are B; # 0 samples, are called
support vectors, and responding to the dictionary samples (Section
2.4.1) selected for orthogonality for LSSVMR.
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