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The  interaction  of  the classical  electromagnetic  field  with  an ensemble  of  polarizable,  identical,  atomic
particles  with  two  energy  levels  is investigated,  and  the  coupled  non-linear  equations  of  motion  for  the
polarization  field  and  the  amplitudes  of  the level  occupancies  are  solved  by  a perturbation-theoretical
method.  A  small  coupling  constant  is  identified,  and  the  solution  is represented  as  a  power  series  in this
coupling  constant.  Explicit  results  are  given  for the  leading  contributions  to the  solution.  In particular,  it is
shown  that  an  external  electromagnetic  field  may  induce  a lasing  effect  in such  an ensemble  of particles,
by  populating  the  (initially  empty)  upper  level.
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The interaction of the classical electromagnetic radiation with
an ensemble of polarizable, identical, atomic particles with two
energy levels is the core of the “semi-classical theory” of the laser
(see, for instance, Refs. [1–3]). The problem has been extensively
investigated, by various approaches and from many angles [4–17].
Usually, the equations of motion for the electromagnetic field and
the occupancies of the two levels are solved by means of some
approximations which, among other particular assumptions, dis-
card the fast oscillating terms. However, such terms may  bring
relevant contributions in the stationary regime. It is generally
believed that an exact solution of the coupled, non-linear equations
of the semi-classical theory of the laser would be impossible (see,
for instance, Ref. [2],  p. 459, Ref. [3],  p. 98). We  present here a fully
computable solution, represented as a power series in a (small)
coupling constant �, and give explicit results for the polarization
field, occupancy numbers and energy in the lowest, most relevant
orders of �, in the presence of an external eletromagnetic field. We
show that a lasing effect can be induced in the ensemble of parti-
cles, driven by the external field which can populate the (initially
empty) upper level.
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We  consider a uniform distribution of polarizable, identical par-
ticles, each with two  quantum energy levels ε0,1, subjected to an
external electromagnetic field and to their own polarization field.
The ensemble of particles exhibits a fluctuating curent density j(r,
t), and a polarization P(r, t), related by j(r, t) = ∂P(r, t)/∂t, which, in
turn, give rise to a polarization field, according to the well-known
wave equations with sources
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where A is the vector potential and E = − (1/c)∂A/∂t is the polariza-
tion electric field (we  assume a transverse radiation field). We  take
only one polarization, oriented along one coordinate axis, and look
for a separable solution of the form E(r, t) = E(t)�(r), P(r, t) = P(t)�(r),
where �(r) is an eigenfunction of the laplacian, ��(r) = − �2�(r), �
being a constant. With the notation ω2

0 = c2�2, the second equation
(1) becomes

Ë(t) + ω2
0E(t) = −4�

∂2P(t)
∂t2

. (2)

We envisage a classical polarization field E; consequently, the
source in the rhs of Eq. (2) can be written as 4�n〈∂2p/∂t2〉, where
p is the dipole momentum of a particle and the brackets denote
the quantum average; the spatial average is taken into account
by the (uniform) density n of the ensemble of particles. We  take
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〈∂2p/∂t2〉 = −ω2
1〈p〉, where h̄ω1 = ε1 − ε0. Eq. (2) can then be written

as

Ë(t) + ω2
0E(t) = 4�nω2

1〈p〉. (3)

In general, 〈∂2p/∂t2〉 depends on the internal dynamics of the par-
ticles, and can be kept as such in Eq. (3),  or it may  be expressed
in terms of other conventional parameters. We  note also that the
electric field source, given generaly by ∂j(t)/∂t, may  not originate
only in orbital currents (as we assumed here), but it may  have also
other origins, like the spin, for instance.

The two quantum states ϕ0,1 are defined by the free hamiltonian
H0 of the internal degrees of freedom of each individual parti-
cle, H0ϕ0,1 = ε0,1ϕ0,1. The interaction hamiltonian for one particle
placed at r is given by

Hint = −p�(r)[E0(r, t) + E(r, t)] = −pEt(t)�2(r), (4)

where the external field E0 has been introduced, as well as the
total field Et = E0 + E. We  assume the fields and the (orthogonal-
ized) eigenfunctions real. The spatial average of Eq. (4) gives an
interaction hamiltonian

(Hint)av = −pEt(t). (5)

The interacting state ϕ = c0ϕ0 + c1ϕ1 is a superposition of the two
free states ϕ0,1, with coefficients c0,1 satisfying the Schrodinger
equation

ih̄
∂c0

∂t
= ε0c0 − p01Etc1,

ih̄
∂c1

∂t
= ε1c1 − p∗

01Etc0.
(6)

The quantum average of the dipole momentum is given by

〈p〉 = p01c∗
0c1 + p∗

01c∗
1c0, (7)

where we have assumed p00 = p11 = 0, as for stationary states. More-
over, we assume for simplicity p01 = p∗

01 = p. We  set ε0 = 0 and
introduce the parameter

x(t) = 2p

h̄ω1
Et(t), (8)

so that Eq. (6) become
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and Eq. (3) can be written as

Ë(t) + ω2
0E(t) = 4�nω2

1p(c∗
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1c0). (10)

In Eq. (8) we may  recognize the well-known Rabi “frequency” pEt/h̄.
Usually, the system of Eq. (9) is transformed into a system of equa-
tions for the occupancies |c0,1 | 2 and the associated matrix density
[2,3]. We  adopt a different route, and focus on the system of Eq. (9)
for the occupancy amplitudes c0,1.

The system of Eq. (9) can be solved formally with c0,1 = C0,1ei�;
we get immediately Ċ0,1 = 0 and

c0 = C0ei�0 − fC1ei�1 , c1 = fC0ei�0 + C1ei�1 ,

�̇0,1 = 1
2

ω1(−1 ±
√

x2(t) + 1),
(11)

where

f (t) = x(t)√
x2(t) + 1 + 1

.  (12)

The coefficients C0,1 are determined by requiring the initial values of
the occupancy numbers |c0,1(t = 0) | 2 be equal with n0,1 (n0 + n1 = 1).
We get the amplitudes

C0,1 = 1
1 + f 2(t)

[
√

n0,1 ± f (t)
√

n1,0] (13)

and the occupancy numbers

|c0,1|2 = n0,1 ± 1
2

x(t)
x2(t) + 1

[2
√
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× [1 − cos(�0 − �1)], (14)

where the phase difference �0 − �1 is given by

�� = �0 − �1 = ω1

∫ t

0

dt
√

x2(t) + 1.  (15)

The oscillations of the occupancies given by Eq. (14) are reminis-
cent of the well-known Rabi oscillations, exhibited, for instance, by
the Jaynes–Cummings model (see, for instance, Refs. [4,15]).  We
take the time averages of all the relevant quantities given above.
We can see, by Eq. (11), that the energy levels ε0,1 are changed by
interaction into the mean values of h̄�̇0,1, and, in addition, the inter-
action mixes up the two  states, as expected. We  can see also that
the mean values of the coefficients C0,1, as well as the mean val-
ues of the coefficients fC0,1 entering Eq. (11), are constants, as it is
required by a stationary solution; it becomes apparent that n0,1 are
constants of integration.

From Eqs. (11)–(13) we  get
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which can be inserted into Eq. (10); we can add the external field
E0, which satisfies the free wave equation Ë0 + ω2

0E0 = 0, such that
Eq. (10) becomes

ẍ + ω2
0x = �2ω2

1
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+ [2
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where �2 = 8�np2/h̄ω1. We  note that x = �Et/e, where e =
√

2�nh̄ω1
is a characteristic electric field.

Eq. (17) is a non-linear (integro-differential) equation. We  ass-
sume � � 1, and seek the solution as a power series in �,

x = �x0 + �2x1 + �3x2 + . . . , (18)

where x0 = B cos ω̃0t, B = E0/e and ω̃0 remains to be determined. We
get straightforwardly
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1
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2
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where
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1
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)
, (20)

for ω1 /= ω0, ± 2ω0. These restrictions can be related to the
parametric resonances 2ω0 � nω1 (where n /= 0 is any integer),
occurring for an associated Mathieu equation which is a close rep-
resentation of the linearized form of Eq. (17) for n1 = 0 (though
not a fully correct approximation to Eq. (17)) [18]. Leaving aside
the (weak) frequency renormalization, the resonances exhibited
by Eq. (19) are in fact what we may  expect from a non-linear oscil-
lator with the basic frequency ω0 subjected to an external force of
frequency ω1. As it is well known, such an oscillator exhibits the
combined-frequency phenomenon, as reflected in the occurrence
of frequencies of the form ω0 ± ω1 and denominators 2ω0 ± ω1, etc.
(arising from terms like ω2

0 − (ω0 ± ω1)2).
We can see that the interaction renormalizes both the field fre-

quency ω0 and the characteristic frequency ω1 of the ensemble of
particles. The term x1 represents the oscillations of the ensemble
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