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A B S T R A C T

Recurrent adverse events, once occur often continue for some duration of time in clinical trials; and the number
of events along with their durations is clinically considered as a measure of severity of a disease under study.
While there are methods available for analyzing recurrent events or durations or for analyzing both side by side,
no effort has been made so far to combine them and present as a single measure. However, this single-valued
combined measure may help clinicians assess the wholesome effect of recurrence of incident comprising events
and durations. Non-parametric approach is adapted here to develop an estimator for estimating the combined
rate of both, the recurrence of events as well as the event-continuation, that is the duration per event. The
proposed estimator produces a single numerical value, the interpretation and meaningfulness of which are
discussed through the analysis of a real-life clinical dataset. The algebraic expression of variance is derived,
asymptotic normality of the estimator is noted, and demonstration is provided on how the estimator can be used
in the setup of testing of statistical hypothesis. Further possible development of the estimator is also noted, to
adjust for the dependence of event occurrences on the history of the process generating recurrent events through
covariates and for the case of dependent censoring.

1. Introduction

In clinical trials on diseases like Chronic Obstructive Pulmonary
Disease (COPD), asthma, or migraine, etc., the event-durations are of
interest along with the event-counts, as together they define severity of
the disease.

Poisson regression or Negative-Binomial regression described by
Lawless [1] for analyzing data on recurrent events when covariates are
considered not time dependent; or for time dependent covariates, es-
timating the mean or rate function of recurrent events, e.g., method
introduced by Lin et al. [2,3] and by Miloslavsky et al. [4] (all the three
based on the definition of intensity function introduced by Andersen-
Gill [5]) are the standard approaches. Otherwise, if event occurrence is
considered dependent on previous events, then stratified Andersen-Gill
model (Cook and Lawless [6], pp 175–176) can be used. In addition,
non-parametric Nelson Aalen estimator ([7]) for the rate or mean
function of recurrent events, and the extensions by Cook et al. [8]) for
event dependent censoring and termination are commonly used
methods for analyzing data on recurrent events.

For the analysis of waiting times (with assumption of independence
among waiting times and deviating from that assumption), detailed
discussion is provided in chapter 4 of Cook and Lawless [6], pp
121–160. Otherwise, the modeling of proportional hazard ratio using

stratified Cox-type models ([9]) based on total time as well as on gap
times introduced by Prentice, William and Peterson [10] and marginal
Cox-models based on total time introduced by Wei, Lin and Weisfeld
[11] are used as well.

On methods for analyzing data on duration, Metcalfe et al. [12]
made a thorough coverage in their article. Otherwise, X. Joan Hu et al.
[13] also proposed some methods for analyzing event-duration. The
bivariate approach to deal with recurrent events with duration is
through an alternating two-state process (‘exacerbation state’ and ‘ex-
acerbation-free state’ being the two alternative states) as described by
Cook and Lawless ([6] section 6.5, pp 216–218 and section 6.7.2, pp
232–236).

However, none of the methods mentioned above present an estimate
for combined cumulative rate or mean of recurrent events and duration
of events over time.

Here in this paper, a non-parametric estimator is proposed that
takes the totality of the data into account through dealing with both,
the recurrence of events and the duration of them simultaneously; and
as a result, produces a single numerical value, which estimates the
wholesome effect of the incident. Consequently, the proposed estimator
can be looked upon as a joint or combined rate of both, the event re-
currences as well as the duration per event.

Following is how the concept of the proposed estimator is developed
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over the next few sections. In section 2, the mathematical motivation,
development and properties of the estimator are described. In section 3,
the interpretation, usefulness and meaningfulness of the single value,
produced by the estimator based on a real-life clinical dataset are dis-
cussed; and in section 4, the possible use and advantages of the pro-
posed estimator are described and further potential developments are
mentioned.

2. Mathematical development

The mathematical framework for this paper is built on a process that
generates recurrence of events to individual subjects, who constitute a
population; and the assumption regarding occurrence of events here is
that, an event can occur and end both at a time instant t (like as it
happens in case of any Poisson process), or can occur at one time in-
stant and then continues for some time before it ends.

2.1. Definitions

Let us denote by Xt the number of events that are observed to have
occurred to an individual subject by (i.e., on or before) time t .

The intensity function is defined (Cook and Lawless [6], chapter 1.3,
p 10) as
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where = −+ΔX X Xt t Δt t and � = ≤ <X s s t{ ( ), 0 }t is the history of a
process.

Note that the intensity function can also be looked upon as
� � �= = =χ t dt P dX E dX( ) ( 1 ) { | }t t t t t .

Based on the definition of intensity function for the occurrence (or,
onset, to be precise) of a new event presented above, let us define the
intensity function for ending of events for an event that has already
occurred (and started) to an individual subject at time-point <t t͠ 0 (i.e.,
the onset of the event was at time-point <t t͠ 0 ) and is not continuing
until (i.e., has ended by) time t as:
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where � = ≤ <X s s t{ ( ), 0 }t is the history of a process and
= −+ΔZ Z Zt t Δt t, with Zt denoting an indicator function such that,

=Z 1t , when an event that has already occurred (and started) at
time-point <t t͠ 0 (i.e., the onset of the event was at time-point

<t t͠ 0 ), continues until time t , or,
=Z 0t , when an event that has already occurred (and started) at

time-point <t t͠ 0 (i.e., the onset of the event was at time-point
<t t͠ 0 ), has also ended by time t .

Note that the intensity function can also be looked upon as
� � �= − = = −χ t dt Pr ΔZ E dZ( ) ( 1 ) { | }Z

t t t t t .

2.2. Mathematical motivation

Let us now define the following variables:

Nt =total count of the onset of events occurred to the population of
n subjects by time t , which is non-decreasing over time, and
Nt

Z =count of events that have already occurred to the population
of n subjects before time t and are continuing until time t.

Clearly, ≥N Nt t
Z at any given time t .

If we define a new variable Nt
s as:
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where X t( )k( ) is an indicator function such that:

=X t( ) 1k( ) when a new event has occurred (in terms of onset of that
new event) by time t to the kth individual subject, or

=X t( ) 0k( ) , when a new event has not occurred (in terms of onset
of that new event) until time t since the preceding event occurred
and ended to the kth individual subject;
Y t( )k( ) is an indicator function with following such that:
Y t( )k( ) =1, when the kth subject belongs to the risk set at time t for
having a new event, since the preceding event occurred and ended,
Y t( )k( ) =0, when the kth subject does not belong to the risk set at
time t for having a new event, since the preceding event has oc-
curred and is continuing;
and C t( )k( ) is an indicator function with following such that:

= ≤C t I t C( ) ( )k k( ) ( ) is an indicator function of whether the kth

subject is under observation at time t.

Clearly, C t( )k( ) is the indicator for censoring of a subject and here
we assume data to be missing at random after censoring.
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Z

k
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Z t C t( ) ( )k k( ) ( ) ,where Z t( )k( ) is an indicator function such that:

Z t( )k( ) =1 if an event that has already occurred (and started) to the
kth subject and is continuing until time t ;
Z t( )k( ) =0 if an event that has already occurred (and started) to the
kth subject and has also ended by time t.

It should be noted that since + =Y t Z t( ) ( ) 1k k( ) ( ) at any given time
t for any k,
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2.3. Development of the estimator

It is already defined that = +N N Nt
S

t t
Z , implies = +ΔN ΔN ΔNt

S
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Z ,
where = −+ΔN N Nt t Δt t.

Since by the total probability theorem, ∪P a b( )
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ε: risk set of subjects at time t for having a new event
ε :C set of (subjects with) existing events (i.e., events that did not end
by time t ) that continuing until time t
a: occurrence of a new event to a subject within the interval of

+t t Δt[ , )
b: an existing event continuing during the interval of +t t Δt[ , )
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