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Meta-analysis has been a powerful tool for inferring the treatment effect between two experimental conditions

Bias from multiple studies of rare binary events. Recently, under a random-effects (RE) model, Bhaumik et al. de-
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veloped a simple average (SA) estimator and showed that with the continuity correction factor 0.5, the SA
estimator was the least biased among a set of commonly used estimators. In this paper, under various RE models
that allow for treatment groups with equal and unequal variability (in either direction), we develop an in-
tegrative shrinkage (iSHRI) estimator based on the SA estimator, which aims to improve estimation efficiency in

terms of mean squared error (MSE) that accounts for the bias-variance tradeoff. Through simulation, we find that
iSHRI has better performance in general when compared with existing methods, in terms of bias, MSE, type I
error and confidence interval coverage. Data examples of rosiglitazone meta-analysis are provided as well, where
iSHRI yields competitive results.

1. Introduction

In medical research, when events of interest are rare, a single ran-
domized study rarely has sufficient power to provide reliable in-
formation regarding the treatment effect between two experimental
conditions (say, treatment vs. control). Therefore, meta-analysis is often
used to combine information from multiple studies of rare binary
events. In the past, various meta-analysis approaches have been de-
veloped to estimate the overall treatment effect, based on either fixed-
effect (FE) models [e.g., 18] or random-effects (RE) models [e.g., 10].
Note that FE models assume a common treatment effect across different
studies while RE models allow the treatment effects to vary from study
to study.

When dealing with rare binary events, under the FE assumption,
commonly used methods for estimating the treatment effect include the
Mantel-Haenszel [MH, 18] with a constant zero-cell correction factor
0.5, Peto [30], and inverse variance methods [10,14]. A previous study
[3] has compared the performance of twelve FE methods. The general
recommendation is to use the MH method with some appropriate
continuity corrections, which is consistent with the findings of Sweeting
et al. [25]. In practice, RE models seem to be less restrictive, especially
for clinical trials, because doses and follow-up time can be different in
individual studies. Through a meta-analysis of multiple rosiglitazone
studies, Shuster et al. [22] pointed out that the performance based on
RE models is superior to that based on FE models. In this paper, we
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focus on meta-analysis of rare binary events based on RE models.

For RE meta-analysis, Shuster [21] showed that the widely used
DerSimonian and Laird [DSL, 10] method can be highly biased for rare
events, and suggested to use the simple (unweighted) average of esti-
mates from individual studies. Recently, Bhaumik et al. [2] formally
proposed a simple average (SA) estimator based on a RE model, which
is the unweighted average of estimated log odd ratios (with a positive
continuity correction factor a) in individual studies. Bhaumik et al. [2]
showed that, when a = %, the SA estimator (SA_0.5) is asymptotically
unbiased and has superior bias performance when compared with ex-
isting estimators, including MH, empirical logit [EL, 10], and DSL
methods. However, Li and Wang [17] pointed out that the RE model
they assumed is restrictive in the sense that it forces the variability in
the treatment group to be no less than that in the control group, and
more importantly, SA_0.5 fails to minimize the mean squared error
(MSE), which is an established measure of estimation performance that
takes into account the bias-variance tradeoff.

Based on the SA estimator, we aim to develop a shrinkage estimator
with smaller MSE to improve estimation efficiency. Shrinkage methods,
which shrink some “standard” estimator toward zero or any other fixed
value, have been widely used in various fields [24,26-29]. Many
shrinkage methods [7,8,29] were developed under a rigorous Bayesian
framework via empirical Bayes (EB) approaches, which shrink a point
estimate from the sample to the prior. By contrast, the others were
derived based on statistical decision theory directly (by minimizing
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some loss function), of which an early example is the famous James—-
Stein estimator [6,16]. A recent example is that, to estimate the failure
rate of rare events from multiple heterogeneous systems, Xiao and Xie
[28] developed a plug-in shrinkage estimator based on Poisson dis-
tributions, which shrinks the maximum likelihood estimator (MLE) of
the failure rate toward a predetermined point in the parameter space,
and so lifts degenerated zero estimates to some reasonable positive
values. This estimator can be expressed as a weighted average of the
MLE and a data-dependent point.

In the context of meta-analysis of rare binary events, we develop an
integrative shrinkage estimator (iSHRI) by using the SA method in
Bhaumik et al. [2] to combine shrinkage estimators from individual
studies, which intends to shrink the estimated log odd ratios with a = %
toward a predetermined point. The shrinkage factor is obtained from
minimizing the MSE and then plug in estimates from the data. We
thoroughly compare the bias and MSE of the proposed method with
existing methods via simulation. We further examine their performance
on hypothesis testing and interval estimation using the type I error and
coverage probability of confidence intervals (CIs). Besides, two data
examples of rosiglitazone meta-analysis are provided for further com-
parison.

2. An integrative shrinkage estimator

Consider a meta-analysis consisting of K randomized studies. In the
kth study, let ny, and ny, be the number of subjects in the treatment and
control groups, respectively. Assume Xy ~ Binomial(ny, p,,) and
Xie ~ Binomial(ny., p,.), where xy, (xi.) is the number of observed events
of interest in the kth study, and p,, (p,.) is the probability of observing
an event in the treatment (control) group. Let q,, =1 — p,, and
Q. = 1 — py.. To measure the treatment effect in study k, the log odds

/
mean treatment effect across component studies ll;k}C/ El;fcand the between-
study heterogeneity among individual treatment effects by 72, satisfying
72 > 0. Below we consider three RE models, to accommodate realistic
situations where treatment and control groups can have equal varia-
bility or unequal variability (in either direction). All the three models

ratio is used throughout this paper, i.e., 6, = ln(M). We denote the

involve random terms 6’s and u’s, where 6 iid N6, 1),
My iid N (u, 72), and any two components of (u;,--,ty; 61,---,0x) are
assumed to be independent. Here, 1, can represent the log odds of the
control or treatment group or the average of the two groups, depending
on model specification below.

1. Model I is the one used in Bhaumik et al. [2], which implicitly as-
sumes that the variance of logit(p,,) is greater than that of logit(p,,):

logit(p,.) = 1y, logit(p,,) =y + 6.
2. Model II is the one used in Smith et al. [23], which assumes equal
variances between the two groups:

L3

. 0
logit(py.) = w, — 2’ g

logit(p;,) = y; + 5

3. Model III assumes the variance in the treatment is less than that in

the control:
logit(py.) = i — 6k, logit(py,) = p.

Although originally developed under Model I, the SA estimator &,
can be used with any of the three models to estimate the mean treat-
ment effect 6, given by:

(€8]

where 6, is an estimator of the individual treatment effect 8 in the kth
study:
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and a is a positive continuity correction factor. Bhaumik et al. [2]

proved that §, is asymptotically unbiased when a = % under Model I;

that is, E(é%) =6 + 0(n™2), where n = min|[(ny, ne)i_,] is the overall
minimum number of subjects. It can be shown that the asymptotic
unbiasedness of 6% also holds under Models II and III. This theoretical

,
Ny — Xk + @ Nge — Xke + @

property ensures that SA_0.5 (i.e., é%) performs well in terms of bias for
large sample sizes. However, Li and Wang [17] proved that SA_0.5 is
suboptimal in terms of MSE, and showed via simulation that it can have
poor MSE performance especially for small sample sizes.

Motivated by Xiao and Xie [28], in the kth study, we consider a
shrinkage estimator of 6; based on ék%, denoted by éSHRI,k:

Bsrrri = Cék% + (1 = )b,
where 6, is a fixed point in the parameter space of 6, and c is a

shrinkage factor. Then our integrative shrinkage estimator for the
overall treatment effect 6 can be given by

K A

. é .

Oisurr = Z —SPI[?”( =0 + (1 = )6
k=1

Clearly, the iSHRI estimator shrinks SA_ 0.5 toward the pre-
determined point 6.
Based on the asymptotic unbiasedness of 6%, it is easy to show

Bias(Bisurt) = (1 — ¢)(6 — 8;) + O(n~2).

Further, we can show that the variance of éiSHRI is given by

A . 2 & 1 1
v =ov(8) = 5 B onl ) )
k=1 Clke 1ke
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Thus, regardless of the model specification, Bisurs has the following
MSE:

+ e +0(n?)
K’ '
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MSE(@isurr) = (1 — ¢)*(6 — 60)* + Efez

2 K 1 1 -
+ =z 2k I:Epkl(nk[pquk[) + Epkc(nkcpkchc):l + 0.

To minimize the asymptotic MSE of éiSHR], we ignore the term
0O(n~?) and set the shrinkage factor c to

x (6 — 6p)?

c = s
_o) 4+ B4 LyK _t S —
(6 —60)* + X + K2 Zk=1 I:Epkt(nk[pqukl) + Epkﬁ(nkcpkchc)] 3

satisfying ¢* < 1. The minimized asymptotic MSE of iSHRI, denoted by
mAMSE, is always less than or equal to the asymptotic MSE of SA_0.5:

1 K 1
+ 2 Zk:l I:Epkt(ﬂktpktflkl)

1
=+ EPkc(nkcpkchc) ] }

= c*AMSE(é%) < AMSE(@%).

N 2
mAMSE(@,»SHRJ) = C* {‘%@

To be able to calculate the shrinkage factor ¢” in (3), we need to

estimate 6, 73, EPk[( ) from the data as well as

_ ! )andE, (—1—
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choosing an appropriate value of 6,. We estimate 6 using SA_0.5. Based
on some preliminary simulation, we find that how to estimate 72 (e.g.,
the popular DSL estimator or other estimators introduced in Bhaumik
et al. 2), has not much effect on the performance of iSHRI. Thus, we set
#2 = 0 for simplicity. We also adopt the estimators in Gart et al. [12] for
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