
Contents lists available at ScienceDirect

Contemporary Clinical Trials Communications

journal homepage: www.elsevier.com/locate/conctc

Bayesian adaptive clinical trials of combination treatments

Kristian Thorlunda,∗, Shirin Golchib, Edward Millsa

a Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
bDepartment of Statistics and Actuarial Science, Simon Fraser University, Vancouver, BC, Canada

A R T I C L E I N F O

Keywords:
Adaptive trials
Additivity
Bayesian
Combination treatment

A B S T R A C T

Randomized clinical trials (RCT) increasingly investigate combination therapies. Strong biological rationale or
early clinical evidence commonly suggest that the effect of the combination treatment is importantly greater
than the maximum effect of any of the individual treatments. While these relationships are commonly well-
accepted, RCTs do not incorporate them into the design or analysis plans. We therefore propose a simple
Bayesian framework for incorporating the known relationships that the effectiveness of a combination treatment
exceeds that of any individual treatment, but does not necessarily exceed the sum of individual effects. We term
the collation of these two relationships ‘fractional additivity’. We performed a binary outcome simulation study
of a response adaptive randomized three-arm clinical trial with treatment arms A, B, and A&B that allowed for
dropping an inferior treatment arm and terminating the trial early for superiority during any of 4 interim
analyses. We compared the Bayesian fractional additivity model to a conventional analysis by measuring the
expected proportion of failures, sample size at trial termination, time to termination, and root mean squared
error of final estimates. We also compared the fractional additivity model to a ‘full additivity’ model where the
effect of A&B was assumed to be the sum of the effect of A and B. In simulation scenarios where important
fractional additivity or full additivity existed, the Bayesian fractional additivity model yielded a 3–4% relative
reduction in expected number of failures, and a 30%–50% relative reduction in sample size at trial termination
compared to a conventional analysis. These results held true even when the Bayesian fractional additivity model
employed a biased prior. The full additivity model had slightly higher gains, but too frequently terminated the
trial at the first interim look. In scenarios where no or weak fractional additivity exists, the expected sample size
and time to termination were similar for the Bayesian fractional additivity model with a moderately optimistic
bias about fractional additivity and the conventional model. Lastly, the fractional additivity model generally
yielded similar or lower root mean squared error compared to the other models. In conclusion, our proposed
Bayesian fractional additivity model provides an efficient approach for estimating effects of combination treat-
ments in clinical trials. The approach is not only highly applicable in adaptive clinical trials, but also provides
added power in a conventional RCT.

1. Background

Several clinical trials investigate combinations of interventions that
have already been demonstrated to be individually effective.
Historically, the superiority of combination therapies (vs single agent
therapies) have been demonstrated medical areas such as in cardio-
vascular diseases (e.g., the poly-pill) and respiratory diseases [3,4].
Recently, superiority of combination therapies have been definitely
demonstrated in phase III randomized clinical trials (RCT) in areas such
as immuno-oncology and type II diabetes (see example Box 1 for de-
tailed description) [1,2,5,6]. In these combination therapy RCTs, the
effectiveness of the individual interventions is typically well known,
and there are typically substantial biological rationale, early clinical

evidence, or evidence from related disease areas to suggest that the
combination of interventions will work markedly better than any of the
interventions alone [3,4,7]. However, RCTs of combination treatments
commonly analyse a combination therapy arm as if it is a separate in-
dividual intervention. For example, this is generally the case in 2 × 2
factorial trials across all areas of medicine. Thus, no advantage is taken
of prior knowledge and assumptions about the combination therapy in
the conduct and analysis of the clinical trial.

While true additivity (i.e. the property that the effect of the com-
bination of two intervention equals the sum of the two individual
treatment effects) is rare, in many cases it is plausible to assume that
treatment combinations investigated in clinical trials will exhibit
markedly better effects than each of the individual treatments alone. In
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other words, it is plausible to assume clinically meaningful fractionally
additive effect of the combination treatment investigated (also pre-
viously referred to as antagonistic additivity [3,7]). Thus, structurally
incorporating fractional additivity into the statistical analysis of a clin-
ical trial should theoretically suffice to optimize the trial design in
terms of mitigating sample size requirements and trial duration. Yet to
our knowledge, no clinical trial has previously capitalized on prior
knowledge about additivity or fractional additivity.

We therefore propose a Bayesian framework for incorporating
fractional additivity in the statistical model and analysis of clinical trial
of combination treatments. The proposed model expresses the effect of
a combination treatment, A&B, as the maximum of A and B, plus a
fractional additivity parameter times the minimum of A and B. A weakly
informative prior distribution is assigned to the fractional additivity
parameter to reflect plausible ranges of fractional additivity, yet does not
rule out equipoise nor full additivity (also previously referred to as
synergistic additivity). Due to the hypothesized efficiency gain we apply
the proposed Bayesian fractional additivity model within an adaptive
clinical trial setting. We test the performance of the proposed model
against a conventional approach using simulations.

2. Methods

We propose a Bayesian fractional additivity modelling framework to
optimize estimation of additive effects in clinical trials. Under the
conjecture that the proposed model adds considerable efficiency com-
pared to the conventional framework, we conduct a simulation study to
assess its performance in an adaptive clinical trial setting. In addition,
we illustrate the evolution of posterior probabilities informing trial
adaptation in 3 simulated clinical trials.

For simplicity, we only consider a binary outcome clinical trial
setting in this paper. However, the proposed model can easily be gen-
eralized to other types of outcomes (e.g., continuous or time-to-event
data).

2.1. The Bayesian fractional additivity model

Under the proposed fractional additivity model, we make two
seminal assumptions:

1) The effect of A&B is likely larger than the maximum of A and B;
2) The effect of A&B is likely smaller than the sum of the effects of A

and B.

Letting θA, and θB denote the log odds of the treatment responses for
A and B, respectively, and letting θA&B denote the log odds treatment
response of A&B, we can express θA&B as a function of θA, and θB as
follows:

θA&B = max(θA, θB) + f·min(θA, θB), (1)

where f is likely a number between 0 and 1 that denotes the fraction of
additivity that the combination treatment exhibits (note that
‘θA&B = θA + θB’ is what is conventionally referred to as ‘full ad-
ditivity’).

This model is easily set up in a Bayesian framework that places non-
informative priors on the effect sizes (i.e., the log odds) of individual
treatment effects, θA and θB, and a weakly-informative prior on the
fractional additivity parameter f. The model is fit using RStan version
2.14.1 (Stan is a probabilistic programming language that implements
Hamiltonian Monte Carlo and RStan is an R interface to Stan) [8]. The
Stan implementation of the model is provided in the supplementary
material.

2.1.1. Prior choice for fractional additivity parameter
The parameter f represents the fractional additivity. Under the

assumptions for model (1), f should lie between 0 and 1, and so a first
natural choice would be a beta distribution. However, strictly con-
straining f to the (0,1) interval, by the choice of prior, implicitly vio-
lates the assumption of equipoise in RCTs. Thus, hard constraints
should be avoided to allow deviations from the fractional additivity
assumption. We instead propose to use a normal distribution as a prior
for f. Expert belief can be used to determine the prior mean, while a
variance of 0.16 is supposed to introduce sufficient uncertainty under
model (1) to allow the accumulating data to shape the inference, while
still being sufficiently informative to stabilize and strengthen estima-
tion (see Table 1 for 95% confidence intervals for group responses
under this choice of variance). In practice, f is not known, but good
biological rationale or early clinical evidence is typically available to
inform f's distribution. In this paper, we specifically test scenarios
where the mean prior distribution for f is unbiased (i.e., the truth in the
simulation), and where f is biased positively or negatively by a 25% (see
section 4.2 for further details).

2.2. Adaptive design

Due to the anticipated efficiencies of the proposed fractional ad-
ditivity model as well as the Bayesian nature of the model, we propose
applying the model within an adaptive trial design framework. For
completeness, however, we confirmed the superior power of the model
in a conventional parallel design framework (see Fig. S.1 in supple-
mentary material). We consider a three-arm response adaptive rando-
mized (RAR) clinical trial design that allows for 1) continually adapting
the allocation ratios by the updated probabilities of superiority for any
treatment; 2) dropping of an inferior treatment arm; and 3) early
stopping for superiority. At the beginning of the trial patients are as-
signed to each of the three intervention arms with equal probabilities
(1:1:1). Adaptations can in principle be applied anytime new outcome
data becomes available. However, for simplicity and computational
feasibility we consider 4 interim analyses at which adaptations can be
made. The four interim looks are spaced equally between the first pa-
tient enrollment and reaching a fixed parallel design sample size re-
quirement between A&B and the maximum of A and B (e.g., 80% power
and 5% type I error to detect a 20% difference). Thus, the first interim
analysis occurs when outcome data on 20% of this required sample size
has been accrued, the second at 40%, and so forth. Trial adaptations are
based on the interim posterior probabilities that A, B, and A&B, re-
spectively are better than the two other interventions. Let pA best, pB best,
and PA&B best denote these three probabilities. At each interim look, the
allocation proportions are updated to the ratio between the square roots
of these three probabilities (i.e., √pA best: √pB best: √PA&B best). The use of
square roots rather than crude probabilities avoids too rapid adaptation
and has become common place in adaptive trials [9]. We also allow for
dropping an inferior treatment arm if the square root probability of
superiority falls below 0.01, as well as early termination of the trial for

Table 1
Overview of simulation scenarios.

Simulation Parameter Fixed values by scenario

Response probabilities for Tx A
and Tx B

1 Pr(response with A) = 35%, Pr
(response with B) = 40%

2 Pr(response with A) = 40%, Pr(response
with B) = 40%

Fractional additivity 1 f = 0.50
2 f = 0.75
3 f = 1.00

Prognostic factor variability σ2 = 0.16 corresponding to 95%CI of group
response of:
1 6.8%–80% when Pr(response with
A) = 35%

2 8.4%–83% when Pr(response with
A) = 40%
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