ARTICLE IN PRESS

JOURNAL OF FOOD AND DRUG ANALYSIS XXX (2017) 1-8

Available online at www.sciencedirect.com

ScienceDirect

Original Article

Transporter-mediated interaction of indican and methotrexate in rats

Shiuan-Pey Lin a,*, Chung-Ping Yu b, Yu-Chi Hou a,b, Ching-Ya Huang b, Lu-Ching Ho b, Shu-Ling Chan c

- ^a School of Pharmacy, China Medical University, Taichung 404, Taiwan, ROC
- ^b Department of Pharmacy, China Medical University Hospital, Taichung 404, Taiwan, ROC
- ^c Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan, ROC

ARTICLE INFO

Article history: Received 21 September 2017 Received in revised form 31 October 2017 Accepted 1 November 2017 Available online xxx

Keywords: Indican Indoxyl sulfate Methotrexate Anion transporters Pharmacokinetics

ABSTRACT

Indican (indoxyl-β-D-glucoside) is present in several Chinese herbs e.g. Isatis indiaotica, Polygonum tinctorium and Polygonum perfoliatum. The major metabolite of indican was indoxyl sulfate (IS), an uremic toxin which was a known substrate/inhibitor of organic anion transporter (OAT) 1, OAT 3 and multidrug resistance-associated protein (MRP) 4. Methotrexate (MTX), an important immunosuppressant with narrow therapeutic window, is a substrate of OAT 1, 2, 3, 4 and MRP 1, 2, 3, 4. We hypothesized that IS, the major metabolite of oral indican, might inhibit the renal excretion of MTX mediated by OAT 1, OAT 3 and MRP 4. Therefore, this study investigated the effect of oral indican on the pharmacokinetics of MTX. Rats were orally given MTX with and without indican (20.0 and 40.0 mg/kg) in a parallel design. The serum MTX concentration was determined by a fluorescence polarization immunoassay. For mechanism clarification, phenolsulfonphthalein (PSP, 5.0 mg/kg), a probe substrate of OAT 1, OAT 3, MRP 2 and MRP 4, was intravenously given to rats with and without a intravenous bolus of IS (10.0 mg/kg) to measure the effect of IS on the elimination of PSP. The results indicated that 20.0 and 40.0 mg/kg of oral indican significantly increased the area under concentration-time curve_{0-t} (AUC_{0-t}) of MTX by 231% and 259%, prolonged the mean residence time (MRT) by 223% and 204%, respectively. Furthermore, intravenous IS significantly increased the AUC_{0-t} of PSP by 204% and decreased the Cl by 68%. In conclusion, oral indican increased the systemic exposure and MRT of MTX through inhibition on multiple anion transporters including OAT 1, OAT 3 and MRP 4 by the major metabolite IS.

Copyright © 2017, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: splin@mail.cmu.edu.tw (S.-P. Lin).

https://doi.org/10.1016/j.jfda.2017.11.006

1021-9498/Copyright © 2017, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Lin S-P, et al., Transporter-mediated interaction of indican and methotrexate in rats, Journal of Food and Drug Analysis (2017), https://doi.org/10.1016/j.jfda.2017.11.006

^{*} Corresponding author. School of Pharmacy, China Medical University, 91 Hsueh-Shih Rd, Taichung 404, Taiwan, ROC. Fax: +886 4 22031028.

1. Introduction

Indican (indoxyl- β -D-glucoside, chemical structure shown in Fig. 1) is a constituent of several Chinese herbs such as Isatis indigotica, Polygonum tinctorium and Polygonum perfoliatum, which are used to treat colds, fever and influenza in clinical Chinese medicine [1,2]. Pharmacological studies of these herbs have reported numerous beneficial effects such as anti-inflammatory [3], antipyretic [3], antiviral [2,4], antimicrobial [5] and anticancer activities [4,6].

In pharmacokinetic aspect, indican was mainly metabolized to indoxyl sulfate (IS) [7], which was a well known endogenous uremic toxin derived from tryptophan [7–9] and also associated with the progression of cardiovascular diseases [10–12]. Being a strong acid, IS is completely ionized in bloodstream and thus unable to permeate cell membrane via passive diffusion [13]. Recent studies reported that IS was a substrate/inhibitor of organic anion transporters (OAT) such as OAT 1, OAT 3 and multidrug resistance-associated protein (MRP) 4 [14,15].

OATs and MRPs have been well recognized as important transporters for anions, which were responsible for the uptake and efflux transports of numerous acidic compounds at various organs [16,17]. Methotrexate (MTX), a dicarboxylic acid, is a substrate of numerous anion transporters such as OAT 1, 2, 3, 4 and MRP 1, 2, 3, 4 [18,19]. In clinical practice, MTX is commonly used for the treatment of certain neoplastic diseases, rheumatic arthritis and psoriasis, but with narrow therapeutic window. More than 80% of MTX was excreted via urine by OATs- and MRPs-mediated transports [20]. The

serum levels of MTX should be carefully monitored because of the accompanied adverse drug reactions, including gastrointestinal problems, central nervous system symptoms, pulmonary damage, hepatotoxicity and nephrotoxicity [21–23].

We herein hypothesized that IS, the major metabolite of oral indican, might inhibit the renal excretion of MTX mediated by the anion transporters including OAT 1, OAT 3 or MRP 4. Therefore, this study investigated the effect of oral indican on the pharmacokinetics of MTX, a probe substrate of OAT 1, 2, 3, 4 and MRP 1, 2, 3, 4 in rats. Furthermore, in order to verify the proposed mechanism, phenolsulfonphthalein (PSP), a substrate of OAT 1, OAT 3, MRP 2 and MRP 4, was injected intravenously to rats as a probe to measure the effect of intravenous IS, which mimicked the metabolite of oral indican, on its elimination.

2. Materials and methods

2.1. Chemicals

Indican, indoxyl sulfate (IS) and phenolsulfonphthalein (PSP) were obtained from Sigma—Aldrich Chemical Co. (St. Louis, MO, U.S.A.). Methotrexate (MTX) (25.0 mg/mL) was obtained from Wyeth Pharma Gmbh (Wolfratshausen, Germany). MK 571 (purity 98%) was obtained from Enzo Life Sciences, Inc. (Farmingdale, NY, USA). Dimethyl sulfoxide (DMSO), sodium dodecyl sulfate (SDS), 3-(4',5'-dimethylthiazol-2'-yl)-2,5-diphenyltetrazolium bromide (MTT) and triton X-100 were supplied by Sigma (St. Louis, MO, USA). Fetal Bovine Serum (FBS) was obtained from Biological Industries Inc. (Kibbutz,

Indican Indoxyl sulfate PSP
$$H_2 \longrightarrow H_2 \longrightarrow H_3 \longrightarrow H_4 \longrightarrow H_4 \longrightarrow H_5 \longrightarrow H_5 \longrightarrow H_6 \longrightarrow$$

 $$\operatorname{MTX}$$ Fig. 1 - Structures of indican, indoxyl sulfate, phenolsulfonphthalein (PSP) and methotrexate (MTX).

Download English Version:

https://daneshyari.com/en/article/8520919

Download Persian Version:

https://daneshyari.com/article/8520919

<u>Daneshyari.com</u>