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a b s t r a c t

An analytical expression for the mean field has been derived from the traveling wave rate equations in
terms of the geometric mean of the counter-propagating fields inside the cavity, and an implicit solution
has been obtained for the geometric mean inside the laser. These lead to the establishment of the ana-
lytical relation between the mean field inside the cavity and the output field from the diode laser. It is
hoped that this relation may provide a common reference for the evaluation of the injection coefficient
when studies are made on the injected semiconductor lasers, whose nonlinear dynamic characteristics
are critically dependent on the injection coefficient, with rate equations simplified by adopting the mean
field approximation.

© 2010 Elsevier GmbH. All rights reserved.

1. Introduction

At present, the rate equations (REs) based on the mean field
approximation (MF) have been recognized as the fundamental
equations used to study the nonlinear dynamic characteristics of
injected semiconductor lasers [1]. With the aid of the MFREs, a rich
variety of nonlinear dynamic features, such as bifurcation, chaos,
etc. from the external cavity semiconductor laser system (ECLD)
and master-slaver semiconductor laser system (MSLD) have been
revealed [2–7]. In order to evaluate the impacts of injection on
the characteristics of the ECLDs and MSLDs, a parameter of vital
importance, named the injection coefficient in this work, has been
introduced into the rate equations. Here, the injection coefficient
is defined as the power ratio of the injected field to the mean field
inside the diode laser, which receives the injection radiation either
feedback from the external cavity or emitted from another inde-
pendent source. A vast amount of research results have suggested
that the nonlinear features of the injected semiconductor lasers
(LDs) are critically dependent on the injection coefficient. For exam-
ple, Tkach and Chraplyvy [8] have pointed out that the nonlinear
features of an ECLD can be categorized into 5 regimes when the
injection coefficient varies from 10−4 to 10−1. Thus, it becomes
apparent that the amplitude of the mean field inside the LD cavity
should be accurately specified.

Generally, the output photon density S (in this work, we assume
that the electric field E is normalized such that |E|2 is equal to S) of
the LD can be measured experimentally. After taking into consid-
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eration the reflectivity of the laser output mirror, the amplitude of
field inside the laser cavity can be evaluated. Logically, however,
this idea cannot be implemented for the case when the mean field
approximation is adopted. In the MFREs, the field amplitude has
been assumed to be independent on the position and the cavity
mirror reflectivities have been turned into a distributed coefficient
instead of a lumped parameters. Under these circumstances, differ-
ent methods have been proposed to relate the output field to the
inside-cavity field.

In Ref. [9], the authors have outlined two methods. One method
involves, working out the photon numbers inside the cavity using
the MFREs, at first, and then distributing the photons lost within the
photon lifetime according to certain ratios which were obtained
by resorting to the variation pictures of the counter-propagating
waves inside the laser cavity. Another method assumes that the
ratio between the feedback field from the external mirror to the
field directly reflected at the output facet (with a reflectivity of R)
facing the external reflector of the diode laser is proportional to (1 −
R)/

√
R. Obviously, the first method has contradicted the hypothesis

of mean field and cannot provide a self-consistent result. In addi-
tion, it is questionable if the photon numbers inside the cavity is
worked out without considering the position dependence of the
stimulated emission arising from the interaction between the light
and gain medium. The expression provided by the second method
can be extracted by regarding the output facet of the diode as a mir-
ror with a power reflectivity of R and comparing the field directly
reflected from the facet with that passing the facet twice and strik-
ing the external mirror once. In other words, the second method
implies that the reflected field at the output facet be the mean field
inside the diode. Later, we will prove that, by using the traveling
wave REs, the ratio of the output field to the geometric mean of the
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counter-propagating fields inside the cavity is equal to (1 − R)/
√

R,
although there may not be a large difference between the geometric
mean and arithmetic mean.

In this work, we have adopted a lumped facet reflectivity and
solved the traveling wave REs similar to those frequently used to
characterize the doped fiber lasers, in which the field variation
along the propagation direction has been retained [10–12]. As a
result, a self-consistent and analytical relation between the mean
field inside the cavity and the output field from the diode laser
has been established. And certain issues of concern have also been
discussed.

2. Determine parameters used in the MFREs

Among various parameters, we choose two basic quantities, i.e.,
the photon density S and carrier density N. In the steady state, the
traveling wave REs can be cast as

±dS±(z)
dz

= [a� (N − N0) − ˛]S± (1)

M − N

�
= avg(N − N0)(S+ + S−) (2)

where the superscripts “±” identify the traveling directions of the
fields inside the laser cavity, a is the differential gain coefficient,
� is the confinement factor (which means that the field has been
averaged along the transversal plane), N0 is the transparency car-
rier density, ˛ is the loss coefficient, � is the carrier lifetime, vg is
the light speed inside the diode, and M is named the pump carrier
density in this work, which is defined by

M = I�

eV
(3)

where I is the bias current, e is the absolute value of an electron
charge, V is the volume of the active layer. Generally, � is depen-
dent on the carrier density N. However, difference of N from the
threshold carrier density Nth is very small if the LD is above thresh-
old biased and we retain the assumption made in the MFREs used to
study the nonlinear dynamics of the injected LDs, i.e., taking � as a
constant. Also, the contribution of the spontaneous emission to the
oscillation mode is neglected in (1), as often adopted in studying
the deterministic characteristics of nonlinear dynamic systems.

The boundary conditions pertain to (1) are

S+(L)R2 = S−(L) (4a)

S−(0)R1 = S+(0) (4b)

where L is the cavity length of the LD, R1 and R2 are the reflectivities
of the diode facets locating at z = 0 and L, respectively.

Subtraction of the two equations of (1), multiplied by S+ and
S−, respectively, it can be shown that the product of S+ and S− is
independent on z, and we can let

S+(z)S−(z) = S2
0 (5)

From (5), it can be understood that S0 is the geometric mean of the
counter-propagating fields inside the LD cavity. And we will show
that S0 is not equal to the arithmetic mean later. Combining (4a),
(4b) and (5), it can be derived that

S+(L) = S0√
R2

, S+(0) = S0

√
R1 (6a)

S−(L) = S0

√
R2, S−(0) = S0√

R1

(6b)

And the output photon density at z = L is

Sout(L) = S+(L)(1 − R2) = S0(1 − R2)√
R2

(7)

From (7), it can be realized that the proportion constant between
the output light and the geometric mean S0 is (1 − R2)/

√
R2, which

is similar to the factor used in the second method mentioned in
Section 1.

Using the equation for S+, it can be proved that

S+(L) = S+(0)exp[a�

∫ L

0

N(z)dz − a�N0L − ˛L] (8)

Inserting (6a) into (8). One can derive that

N̄ = N0 + ˛ − ln(r1r2)/L

a�
(9)

where

N̄ =
∫ L

0

N(z)dz

L
(10)

Inspecting (9), it can be realized that the right hand side is
the threshold carrier density Nth of the LD, frequently used in the
MFREs. And (9) tells us that the mean carrier density inside the laser
cavity is also equal to Nth for the above-threshold biased LD when
traveling wave REs are employed.

Now, let us focus on the average photon density inside the laser
cavity. Summing up the two equations of (1) and considering (2), it
can be deduced that

dS+

dz
− dS−

dz
= � (M − N)

�vg
− ˛(S+ + S−) (11)

Integrating the above equation from 0 to L, taking into account
(6a), (6b) and (9), it can be obtained that

S̄+ + S̄− = � (M − Nth)L/(�vg) − �S0

˛L
(12)

where

S̄± =
∫ L

0

S±(z)dz

L
(13a)

� = (1 −
√

R1R2)(
√

R1 +
√

R2)√
R1R2

(13b)

Thus, we have derived relation between the mean field pho-
ton numbers and the geometric mean S0. Once the quantity S0 is
obtained, the relation between the mean field inside the laser cav-
ity and the output of the laser can be established. At this stage, we
would like to point out that the above derivations can be extended
to other quantities proportional to the square of the absolute value
of the field, such as light intensity, radiation power, etc.

According to the physical picture adopted by the traveling
wave REs, taking into consideration the phases of the counter-
propagating fields inside the cavity and the definition of S+ and
S− made in this work, the field inside the laser cavity can be put
down as [9]:

E(z) =
√

S+exp(ikz) +
√

S−exp[ik(2L − z)] (14)

where the quantity k is equal to 2��/�, with � and � being the effec-
tive refractive index inside the diode and radiation wavelength,
respectively. Assuming that 2kL is equal to an integer time of 2�
for the self-regenerated mode and considering the fact that

√
S+S−

is a constant, an integration of (14) from z = 0 to L, leads to∫ L

0

∣∣E(z)
∣∣2

dz

L
= S̄+ + S̄− ≡ S̄ (15)

In view of the above equation, the magnitude of the mean field used

in MAREs should be equal to
√

S̄, whose expression has been given
in (12) already. From (12), it may be concluded that the quantity S0
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