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a b s t r a c t

Based on the extended Huygens–Fresnel principle, analytical formulas are derived for the cross-spectral
density matrix of an apertured stochastic electromagnetic twist anisotropic Gaussian Schell-model
(ETAGSM) beam propagating in a turbulent atmosphere by use of a tensor method. Spectral proper-
ties of apertured ETAGSM beam are closely related with the strength of atmospheric turbulence, the
aperture widths and the beam’s parameters, etc. Our main attention was focused on the influence of
the aperture widths, atmospheric turbulence, twist parameters and partial coherence on the spectral
properties (including spectral degree of polarization, the spectral degree of coherence and the spectral
density) of apertured ETAGSM beam propagating in turbulent atmosphere. Numerical calculation results
and analysis are given.

© 2010 Elsevier GmbH. All rights reserved.

1. Introduction

During the past several decades, with the help of the unified
theory of coherence and polarization, the properties of partially
coherent and partially polarized laser beams through the turbulent
atmosphere have been investigated extensively. The changes in the
degree of polarization of partially coherent electromagnetic beams
propagating through atmospheric turbulence were studied by Wolf
and colleagues. It was indicated that after sufficient propagation
distance in turbulence, the degree of polarization of partially coher-
ent electromagnetic beams tends towards the value that it has in
the source plane, which is quite different from the behavior in free
space [1–3]. In 2007, Du et al. pointed out that unlike an isotropic
electromagnetic Gaussian Schell-model beam, the spectral degree
of polarization of an anisotropic electromagnetic Gaussian Schell-
model beam does not return to its value in the source plane after
propagating at sufficiently large distance in the atmosphere [4].

However, the above-mentioned studies were restricted to the
unapertured case. It is very important to study the propagation
property of apertured laser beams, because the beam emitted from
a laser system is more or less apertured in practice. As yet, only a few
papers have dealt with the propagation of apertured laser beams in
atmospheric turbulence, e.g., the propagation of plane waves, flat-
tened Gaussian beams, cosh-Gaussian beams, and twist anisotropic
Gaussian Schell-model beams diffracted by an aperture in turbulent
atmosphere was studied in Refs. [5–8], respectively. However, to
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the best of our knowledge, the propagation properties of the aper-
tured partially coherent and partially polarized electromagnetic
twist anisotropic Gaussian Schell-model (ETAGSM) beam in turbu-
lent atmosphere have never been studied. Based on the extended
Huygens–Fresnel principle, we derive the electric cross-spectral
density matrix and investigate the spectral properties (i.e., spectral
density, the spectral degree of coherence and the spectral degree of
polarization) of an apertured stochastic ETAGSM beam propagating
in a turbulent atmosphere by a tensor method. Spectral properties
of ETAGSM beam are closely related with the strength of atmo-
spheric turbulence, the aperture widths and the beam’s parameters,
etc. Numerical calculation results and analysis are given.

2. Formulation

Consider partially coherent stochastic electromagnetic beam
propagation close to the z-axis in the turbulent atmosphere, which
can be characterized by a 2 × 2 electric cross-spectral density
matrix [9], i.e.:

W(�̃, z;ω) =
[
Wxx(�̃, z;ω) Wxy(�̃, z;ω)

Wyx(�̃, z;ω) Wyy(�̃, z;ω)

]
(1)

where Wij(�̃, z;ω) =
〈
Ei(�1, z;ω)E∗

j (�2, z;ω)
〉

(i, j = x, y) (2)

here �̃T =
(
�T1, �

T
2

)
, �1 and �2 are position vectors of two arbi-

trary points in the receiver plane and T indicates the transpose.
(*) denotes the complex conjugate, 〈 〉 represents the average over
an ensemble of realizations of the electric field, ω is the angular
frequency, Ex(�, z; ω) and Ey(�, z; ω)are electric field components
in the receiver plane.
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Based on the extended Huygens–Fresnel principle, the elements
of the electric cross-spectral density matrixWij(�̃, z;ω) of an aper-
tured stochastic ETAGSM beam in the turbulent atmosphere can be
expressed as [10,11]:

Wij(�̃, z;ω) = k2

4�2z2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Wsij(r̃,0;ω)H(r1)H∗(r2)

× exp
[
− ik

2z
(r1 − �1)2 + ik

2z
(r2 − �2)2

]
×
〈

exp[ ∗(r1, �1, z;ω) + (r2, �2, z;ω)]
〉
m
dr1dr2

(3)

with r̃T =
(
rT1 , r

T
2

)
, r1 and r2 are position vectors of two arbitrary

points in the source plane. k = 2�/�=ω/c denotes the wave number
with � being the wavelength and c is the wave speed in vacuum.
Wsij(r̃,0;ω) is the cross-spectral density in the source plane, H(r1) is
the hard-aperture function. 〈 〉m denotes averaging over the ensem-
ble of turbulent media and can be expressed as [12,13]:〈

exp[ ∗(r1, �1, z;ω) + (r2, �2, z;ω)]
〉
m

= exp

{
− [(r1 − r2)2 + (r1 − r2)(�1 − �2) + (�1 − �2)2]

�2
0

}
(4)

here �0 = (0.545C2
nk

2z)
−3/5

is the coherence length of a spherical
wave propagating in the turbulent atmosphere whose behavior is
described by the Kolmogorov model and C2

n is the refractive index
structure constant denoting the strength of turbulent atmosphere.
In the derivation of Eq. (4), we have quadratic approximation for
Rytov’s phase structure function in order to obtain simpler and
viewable analytical results [12,13]. This quadratic approximation
has been shown to be reliable and has been widely investigated
[4,14–16].

After some rearrangement, we can express Eq. (3) in the follow-
ing tensor form:

Wij(�̃, z;ω) = k2

4�2[det(B̃)]
1/2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

×Wsij(r̃,0;ω)H(r1)H∗(r2)

× exp
[
− ik

2
(r̃T B̃−1 r̃ − 2r̃T B̃−1�̃ + �̃T B̃−1�̃

]
× exp

[
− ik

2
r̃T P̃r̃ − ik

2
r̃T P̃�̃ − ik

2
�̃T P̃�̃

]
dr̃ (5)

with B̃ =
(
zI 0
0 −zI

)
, P̃ = 2

ik�2
0

(
I −I

−I I

)
, and I is a 2 × 2 matrix.

If the hard-edged aperture is circular and the radius is a1,
H(r1) = 1 for |r1| ≤ a1 and H(r1) = 0 for |r1| > a1. Then the hard-
aperture function can be expanded as the following finite sum of
complex Gaussian functions [17,18]:

H(r1) =
M∑
m=1

Am exp

(
−Bm
a2

1

r21

)
(6)

with Am and Bm are the expansion and the Gaussian coefficients; a
table of Am and Bm can be found in Ref. [17]. The simulation accuracy
improves as M increases.

The element of the cross-spectral density matrix of an apertured
stochastic ETAGSM beams at z = 0 can be expressed in the following
tensor form [4]:

Wsij(r̃,0;ω) = CiCjDij exp
(

− ik
2
r̃TM−1

sij
r̃
)

(7)

here M−1
sij

is a transpose symmetric matrix and called partially
coherent complex curvature tensor. For eTAGSM beams, the cor-
responding partially coherent complex curvature tensorM−1

sij
takes

the following form [19,20]:

M−1
sij

=

⎛
⎜⎝ R

−1
sij

+
(

− i

2k

)(
�2
Isij

)−1
− i

k

(
�2
gsij

)−1 i

k

(
�2
gsij

)−1 + usijJ

i

k

(
�2
gsij

)−1 + usijJT −R−1
sij

+
(

− i

2k

)(
�2
Isij

)−1
− i

k

(
�2
gsij

)−1

⎞
⎟⎠ (8)

with R−1
ij

is a 2 × 2 wavefront curvature matrix and usij is a real-

valued constant named the twist factor and J =
(

0 1
−1 0

)
. �2

Isij

stands for transverse spot width matrix, �2
gsij

denotes transverse

coherence width matrix. �2
Isij

, �2
gsij

are all 2 × 2 matrices with trans-
pose symmetry, given by

(�2
Isij)

−1 =
(
�−2
I11ij �−2

I12ij

�−2
I21ij �−2

I22ij

)
(�2
gsij)

−1 =
(
�−2
g11ij �−2

g12ij

�−2
g21ij �−2

g22ij

)
(9)

here the coefficients Ci, Cj and Dij are independent of position but
may depend on frequency [4]. Moreover, the factor Dij has the prop-
erties [20]:

Dij = 1 when i = j;
∣∣Dij∣∣ ≤ 1 when i /= j Dij = D∗

ij. (10)

After rearrangement, Wsij(r̃,0;ω)H(r1)H∗(r2) in Eq. (5) can be
expressed in the following tensor form:

Wsij(r̃,0;ω)H(r1)H∗(r2)

= CiCjDij
M∑
m=1

M∑
n=1

AmA
∗
n × exp

[
− ik

2
r̃T (Bmn +M−1

sij
)r̃
]

(11)

where Bmn = 2

ika2
1

(
BmI 0
0 B∗

nI

)
(12)

Then Eq. (5) is reduced to a sum of Collins-type integrals,
and the input function for every Collins-type integral is AmA∗

n ×
exp
(

− ik
2 r̃
T (Bmn +M−1

sij
)r̃
)

. After integration, we obtain:

Wij(�̃, z;ω) = CiCjDij

M∑
m=1

M∑
n=1

AmA
∗
n

×
(

det
[
Ĩ + B̃(Bmn +M−1

sij
+ P̃)

])−1/2

× exp
[
− ik

2
�̃TM−1

ij
�̃
]

(13)

here M−1
ij

= P̃ + B̃−1 −
(
B̃−1 − 1

2
P̃
)T(

Bmn +M−1
sij

+ B̃−1 + P̃
)−1

×
(
B̃−1 − 1

2
P̃
)

(14)
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