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Effects of third-order aberrations on the irradiance of self-image
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Abstract

We examine the effects of third-order aberrations exerted on the irradiance of image that is observable in a coherent
self-imaging system. Both spherical aberration and astigmatism degrade the visibility of the image of a sinusoidal-type
grating as well as blur the outline of the image of a rectangular-type grating. Coma laterally shifts the image of a
sinusoidal-type grating on the image plane as well as changes a rectangular-type pattern into an asymmetrically blurred
pattern. According to our analysis, the self-image of a high-density grating with a period of two times the optical
wavelength is not at all affected by spherical aberration. In general a self-imaging system can always be corrected for
astigmatism by shifting the image plane in its normal direction. We show that the self-image with defect can be well
explained by taking the third-order aberrations and the focus-shift aberration into consideration.
r 2008 Elsevier GmbH. All rights reserved.
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1. Introduction

Recently we have developed a geometrical theory of
aberration for a self-imaging system that is very useful in
evaluating the self-imaged patterns of linear, rectangu-
lar, or two-dimensional oblique periodicity [1–4]. When
a coherent light is transmitted through (or reflected
from) a periodic pattern, the incident light is split into
several rays corresponding to a certain finite number of
diffracted orders and the transmitted (or reflected) rays
of different orders are combined again to make a self-
image of the periodic pattern under appropriate condi-
tions [5–13]. The self-imaging effect can be well
described as the properties of the Fresnel field [14–18]
that is generated on a quadric approximation of the

optical path length in a Fresnel–Kirchhoff diffraction
integral [19]. From the viewpoint of ray optics, the
optical path of a self-imaging ray depends upon the
terms of up to second order in the aperture coordinate,
while that of the corresponding actual ray includes
the higher-order terms in the aperture coordinate. The
aberration of a self-imaging system results from the
difference between the optical paths of the self-imaging
ray and of the corresponding actual ray. In earlier works
[1–3], we have analytically formulated the third (or
fifth)-order aberration functions for a self-imaging
system and then analyzed the role of the aberration
functions in the amplitude spectrum of self-image.
However, the effects of third (or fifth)-order aberrations
on the irradiance of self-image have not been examined
systematically. Though a self-imaging system is under
coherent illumination, it is the irradiance of image that is
observable. Therefore, it is of importance to analyze
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how the irradiance of image as an observable quantity is
deformed (or blurred) by the aberrations.

In this paper, we examine the effects of third-order
aberrations on the irradiance of self-image that is
observable. First we formulate analytically the self-
imaging field that is generated on a fourth-order
approximation of the optical path length in a Fresnel–
Kirchhoff diffraction integral [19] and then numerically
evaluate the irradiance of the self-imaging field which
suffers from third-order aberrations. We show that
both spherical aberration and astigmatism are respon-
sible for not only degrading the visibility of the image
of a sinusoidal-type transmission grating but also both
deforming the ripples in the image of a rectangular-type
transmission grating and blurring the outline of the
image. We also find that coma plays an important role
in moving the image of a sinusoidal-type transmission
grating in a direction parallel to the image plane, while
the coma changes a rectangular-type transmission
pattern into an asymmetrically blurred pattern. Accord-
ing to our analysis, the self-image of a high-density
grating, of which the period is equal to two times the
optical wavelength, is not at all affected by spherical
aberration, and in general a self-imaging system can
always be corrected for astigmatism by shifting the
image plane in its normal direction. We also show that
the defects in the self-images of an infinite pattern of
bars and spaces can be well explained by our theoretical
model in which we take the third-order aberrations
and the focus-shift aberration into consideration. The
theoretical model for a self-image with defect, discussed
in this paper, will be useful in analyzing the blurred
(or deformed) image of a high-density grating, which is
generated by the oblique incidence of a coherent light.

2. Light disturbance for a self-image with third-

order aberrations

We first consider a self-imaging system under
coherent illumination as shown in Fig. 1. A monochro-
matic light of wavelength l, emerging from a source
point P, arrives at another point P0 after being diffracted
at some point Q in the opening of a grating. We choose
the point P0 at which the light disturbance appears like
the opening in the grating. We take a Cartesian
reference system with origin in the grating surface and
with the x and y axes in the plane of the grating and
choose the positive z-direction to the point into the half-
space that contains the observation point P0. The
coordinates of P and P0 are denoted by ðx; Z; zÞ and
ðx0; Z0; z0Þ in source and image spaces, respectively, and
the point Q has the coordinates ðxQ; yQ; 0Þ of which the
dimensions are small compared in magnitude with z and z0.
If the opening of the grating is parallel to the x-axis

and oscillating with a fundamental spatial period of p

along the y-axis, its amplitude transmission at Q may be
represented in a Fourier series of harmonic functions

tðyQÞ ¼
X1

m¼�1

bm exp i
2pm

p
yQ

� �
, (1)

where m is an integer and bm stands for the amplitude of
the harmonic wave with a spatial frequency of ðm=pÞ.
When a coherent light of wavelength l illuminates the
grating of this type, the in-phase self-images of the
grating are formed at distances z0 which depend upon
the source distance z and the grating constant p as
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�

1

z
¼

l
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, (2)

with any positive integer s. In addition, the optical path
of a self-imaging ray of mth order, propagated in air
from a source point P through a point Q in the grating
to an image point P0, is determined by the raytracing
equations

xQ ¼ x0; yQ ¼ y0 � 2spm, (3)

where the coordinates ðx0; y0Þ denote the point V at
which the zero-order ray (i.e., the straight line PP0)
intersects the surface of the grating. The above condi-
tions (2) and (3) have been derived from the Fresnel–
Kirchhoff diffraction formula in a quadric approxima-
tion of the optical path length and Fermat’s principle
[1–4,19].

To analyze the image of the grating suffering from
third-order aberrations, however, we have to take into
account the terms of up to fourth order in aperture
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Fig. 1. Schematic diagram of a self-imaging system with

coherent illumination. A monochromatic light of wavelength l,
coming from a source point P, illuminates a line grating of

period p. The coordinate system is referred to the surface of the

grating, parallel to the x and y axes but normal to the z-axis.

The zero-order ray goes straight from the source point P to

another point P0 on the self-image plane and it also intersects

the grating surface at the point V. The mth order diffracted ray

passes from P to P0 after being diffracted at some point Q in

the aperture of the grating. z and z0 denote the distances from
the grating surface to the source and image points, respec-

tively. We have the coordinates of ðx; Z; zÞ for P, ðx0; y0; 0Þ for V,

ðxQ; yQ; 0Þ for Q, and ðx0; Z0; z0Þ for P0.
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