
OpticsOptikOptik
Optik 120 (2009) 715–720

Elliptic incoherent spatial solitons and their interactions in strongly
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Abstract

We investigate the propagation and interaction of elliptic incoherent spatial solitons (EISS) in strongly nonlocal kerr

media with an anisotropic nonlocality based on the coherent density approach. An exact analytical solution of such
EISS is obtained; the results show that such EISS can form with both isotropic and anisotropic coherence. Moreover,
we find that the interaction properties of EISS are very similar to that of their coherent counterpart. Some numerical
examples are presented and pertinent physics features are addressed.
r 2008 Elsevier GmbH. All rights reserved.
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1. Introduction

Spatial solitons have drawn considerable attention in
the past decades for their potential applications in the
signal process and optical communications. Especially
since the first observation of incoherent spatial solitons
in photorefractive crystals [1,2], several theoretical and
experimental investigations have been carried out [3–10].
More recently, incoherent spatial solitons were extended
to nonlinear period lattices [11,12] and nonlocal non-
linear media [13–20]. Nonlocal incoherent spatial
solitons are partially coherent beams and white-light
beams propagating without changing their shape in
nonlocal media. In general, the nonlocal response
function plays an important role in the formation of
ð2þ 1ÞD nonlocal coherent (incoherent) solitons, which

are discussed in Refs. [21–23]. Just as Refs. [8,9,22,23]
pointed out, local, spatially isotropic nonlinear media
cannot support coherent elliptic solitons, because such a
local, isotropic nonlinearity cannot compensate for two
different diffraction angles simultaneously. In contrast,
elliptic incoherent beams with an anisotropic correlation
can form solitons in isotropic media, while in aniso-
tropic nonlocal media, anisotropic boundary conditions
can support coherent elliptic solitons [22]. Hence,
whether an anisotropic nonlocal nonlinearity may
facilitate an elliptic incoherent soliton still remains a
question, so as their interactions.

In this letter, we consider a nonlocal kerr medium
which has an anisotropic nonlocality (for example, the
nonlocal response function is Gaussian type with an
elliptically nonlocal response), and then investigate the
propagation and interaction of elliptic incoherent spatial
solitons in such media. The results show that EISS can
form with both isotropic and anisotropic coherence.

ARTICLE IN PRESS

www.elsevier.de/ijleo

0030-4026/$ - see front matter r 2008 Elsevier GmbH. All rights reserved.

doi:10.1016/j.ijleo.2008.02.024

�Corresponding author.

E-mail address: guoq@scnu.edu.cn (Q. Guo).

www.elsevier.de/ijleo
dx.doi.org/10.1016/j.ijleo.2008.02.024
mailto:guoq@scnu.edu.cn


Moreover, we find that some interaction properties of
EISS are very similar to that in the ð1þ 1ÞD case which
we investigated in Ref. [5], and are very similar to that of
their coherent counterpart, while they are different from
that in saturable nonlinear media [9].

2. Theoretical model

To start, let us assume that the light beam propagates
along the z-axis and diffracts both in the x and the y

directions. Propagation of a two-dimensional quasi-
monochromatic partially incoherent beam is governed
by the following nonlinear Schrödinger equation [3,8]:
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Eq. (1) describes partially incoherent beam propagation
along the z direction of a non-instantaneous nonlinear
medium, which is the evolution equation of the coherent
density function f. yx (or yy) is an angle (in radians) with
respect to the z-axis in the x (or y) direction.
k ¼ n0k0; k0 ¼ 2p=l. Iðx; y; zÞ denotes the time-averaged
total intensity. Here, we consider a strongly nonlocal
kerr medium, in which the refractive index change
dnðIðx; y; zÞÞ induced by a beam with intensity Iðx; y; zÞ
can be represented in a general form as [14]
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where Rðx; yÞ is the so-called nonlocal response func-
tion. In strongly nonlocal media, the nonlocal response
function Rðx� x0; y� y0Þ can be expanded in Tailor’s
series with respect to x0 about x0 ¼ x and y0 about y0 ¼ y

to second order, respectively. Following Refs. [24,25],
we can rewrite Eq. (3) as
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where P ¼
RR

Iðx; y; zÞdxdy is the beam power and P0 is
the beam power at z ¼ 0. Rð0Þ is the maximum of Rðx; yÞ,
R00xð0Þ ¼ d2Rðx; yÞ=dx2jx¼0;y¼0 and R00yð0Þ ¼ d2Rðx; yÞ=
dy2jx¼0;y¼0, respectively. The last two terms of Eq. (4)
can be neglected for the strong nonlocality; thus, we can

rewrite the evolution equation (1) in another way:
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and at z ¼ 0,
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where r is the intensity ratio, that is, r ¼ maxðIÞ, and
f0ðx; yÞ is the input spatial modulation function.
GN ðyx; yyÞ is the normalized angular power spectrum
of the incoherent source. In general the incoherent
angular power spectrum is Gaussian, i.e., GNðyx; yyÞ ¼

expð�y2x=y
2
0x � y2y=y

2
0yÞ=py0xy0y, where y0x and y0y repre-

sent the width of the source angular power spectrum in
the x and y directions, respectively. Less coherence means
larger y0x and y0y. It is worth pointing out that Eq. (7) is
very similar to the model discussed in Refs. [5,6], and so
we believe that Eq. (7) also has an exact analytical
solution of such an incoherent soliton. Following
Refs. [5,6], we set f0ðx; y; z ¼ 0Þ ¼ expð�ðx=x0Þ

2
�

ðy=y0Þ
2=2Þ at the input, where x0 and y0 are the soliton

widths of the incoherent soliton. In this case, the input
power P0 ¼ pr2x0y0, and we can obtain the following
relation [5]:
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From Eq. (7), we can conclude that an elliptic incoherent
soliton can form with arbitrary incoherence properties,
provided Eq. (7) is satisfied.

Furthermore, we can assume that the material
response is a Gaussian function with an elliptically
nonlocal response such that
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where sx and sy represent the extents of the nonlocality
in the x and y directions, respectively, (in this letter, we
consider only the case sxasy, while the other case sx ¼

sy is discussed in Ref. [17] based on the mutual
coherence function approach), which are much larger
than the beam width in strongly nonlocal media. It is
easy to obtain Rð0Þ ¼ 1=psxsy, R00xð0Þ ¼ �2=ps

3
xsy and

R00yð0Þ ¼ �2=ps
3
ysx. Combing Eq. (8) together with Rð0Þ

and R00ð0Þ, we can rewrite Eq. (4) as follows:
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