Accepted Manuscript

Review

Evolving Mechanisms of Vascular Smooth Muscle Contraction Highlight Key Targets in Vascular Disease

Zhongwei Liu, Raouf A. Khalil

PII:	S0006-2952(18)30069-8
DOI:	https://doi.org/10.1016/j.bcp.2018.02.012
Reference:	BCP 13057
To appear in:	Biochemical Pharmacology
Received Date:	12 December 2017
Accepted Date:	12 February 2018

Please cite this article as: Z. Liu, R.A. Khalil, Evolving Mechanisms of Vascular Smooth Muscle Contraction Highlight Key Targets in Vascular Disease, *Biochemical Pharmacology* (2018), doi: https://doi.org/10.1016/j.bcp. 2018.02.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Evolving Mechanisms of Vascular Smooth Muscle Contraction

Highlight Key Targets in Vascular Disease

Zhongwei Liu, Raouf A. Khalil

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery,

Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA

Running Title: Mechanisms of VSM Contraction

Key Words: blood vessels, calcium, channels, protein kinase, sarcoplasmic reticulum,

NAN

signaling

Correspondence and Reprints:

Raouf A Khalil, MD, PhD Harvard Medical School Brigham and Women's Hospital Division of Vascular Surgery 75 Francis Street Boston, MA 02115 Tel : (617) 525-8530 Fax : (617) 264-5124 E-mail : <u>raouf_khalil@hms.harvard.edu</u>

List of Abbreviations: AGE, Advanced Glycation End products; ALDH2, aldehyde dehydrogenase 2; AnglI, angiotensin II; BK_{Ca} , large conductance Ca^{2+} -activated K^{+} channel; Ca^{2+} , calcium; $[Ca^{2+}]_c$, cytosolic free Ca^{2+} concentration; CaD, caldesmon, CaM, calmodulin; cAMP, cyclic adenosine monophosphate; CaP, calponin; cGMP, cyclic guanosine monophosphate; CICR, Ca²⁺-induced Ca²⁺ release; CNP, C-type natriuretic peptide; CPI-17, PKC-potentiated phosphatase inhibitor protein-17; DAG, diacyglycerol; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; ET-1, endothelin-1; HSP, heat shock protein; ICAM-1, intercellular adhesion molecule-1; IP₃, inositol 1,4,5-trisphosphate; IRS1, insulin receptor substrate 1; K_v , voltage-gated K⁺ channel; LTCC, L-Type Ca_v1.2 channel; MARCKS, myristoylated alanine-rich C kinase substrate; MLC, myosin light chain; PDBu, phorbol 12,13-dibutyrate; PDGF, platelet-derived growth factor; PDK, phosphoinositidedependent kinase; PKA, cAMP-dependent protein kinase; PKC, protein kinase C; PKG, cGMP-dependent protein kinase; PMA, 12-myristate phorbol 13-acetate: PMCA. plasmalemmal Ca²⁺-ATPase; PLC, phospholipase C; PS, phosphatidylserine; RAGE, AGE receptor; ROC, receptor-operated Ca²⁺ channel; ROCK, Rho-kinase; ROS, reactive oxygen species; SERCA, sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase; SOC, store-operated Ca²⁺ channel; SR, sarcoplasmic reticulum; TRP, transient receptor potential channel, TTCC, Ttype Ca_V3.1/3.2/3.3; VCAM-1, vascular cell adhesion molecule-1; VEGF; vascular endothelial growth factor; VDCC, voltage-dependent Ca²⁺ channel; VSM, vascular smooth muscle

Download English Version:

https://daneshyari.com/en/article/8523872

Download Persian Version:

https://daneshyari.com/article/8523872

Daneshyari.com